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DEPARTMENT OF LABOR

Mine Safety and Health Administration

30 CFR Parts 72 and 75

RIN 1219–AA74

Diesel Particulate Matter Exposure of
Underground Coal Miners

AGENCY: Mine Safety and Health
Administration (MSHA), Labor.
ACTION: Proposed rule.

SUMMARY: This proposed rule would
establish new health standards for
underground coal mines that use
equipment powered by diesel engines.

This proposal is designed to reduce
the risks to underground coal miners of
serious health hazards that are
associated with exposure to high
concentrations of diesel particulate
matter (dpm). DPM is a very small
particle in diesel exhaust. Underground
miners are exposed to far higher
concentrations of this fine particulate
than any other group of workers. The
best available evidence indicates that
such high exposures put these miners at
excess risk of a variety of adverse health
effects, including lung cancer.

The proposed rule for underground
coal mines would require that mine
operators install and maintain high-
efficiency filtration systems on certain
types of diesel-powered equipment.
Underground coal mine operators
would also be required to train miners
about the hazards of dpm exposure.

By separate notice, MSHA will soon
propose a rule to reduce dpm exposures
in underground metal and nonmetal
mines.
DATES: Comments must be received on
or before August 7, 1998. Submit
written comments on the information

collection requirements by August 7,
1998.

ADDRESSES: Comments on the proposed
rule may be transmitted by electronic
mail, fax, or mail, or dropped off in
person at any MSHA office. Comments
by electronic mail must be clearly
identified as such and sent to this e-mail
address: comments@msha.gov.
Comments by fax must be clearly
identified as such and sent to: MSHA,
Office of Standards, Regulations, and
Variances, 703–235–5551. Send mail
comments to: MSHA, Office of
Standards, Regulations, and Variances,
Room 631, 4015 Wilson Boulevard,
Arlington, VA 22203–1984, or any
MSHA district or field office. The
Agency will have copies of the proposal
available for review by the mining
community at each district and field
office location, at the National Mine
Safety and Health Academy, and at each
technical support center. The document
will also be available for loan to
interested members of the public on an
as needed basis. MSHA will also accept
written comments from the mining
community at the field and district
offices, at the National Mine Safety and
Health Academy, and at technical
support centers. These comments will
become a part of the official rulemaking
record. Interested persons are
encouraged to supplement written
comments with computer files or disks;
please contact the Agency with any
questions about format.

Written comments on the information
collection requirements may be
submitted directly to the Office of
Information and Regulatory Affairs,
New Executive Office Building, 725
17th Street, NW., Rm. 10235,
Washington, D.C. 20503, Attn: Desk
Officer for MSHA.

FOR FURTHER INFORMATION CONTACT:
Patricia W. Silvey, Director; Office of
Standards, Regulations, and Variances;
MSHA; 703–235–1910.

SUPPLEMENTARY INFORMATION:

I. Questions and Answers About This
Proposed Rule

(A) General Information of Interest to
the Entire Mining Community

(1) What Actions Are Being Proposed?

MSHA has determined that action is
essential to reduce the exposure of
miners to a harmful substance emitted
from diesel engines—and that
regulations are needed for this purpose
in underground mines. This notice
proposes requirements for underground
coal mines; by separate notice, MSHA
will soon propose a rule for
underground metal and nonmetal
mines.

The harmful substance is known as
diesel particulate matter (dpm). As
shown in Figure I–1, average
concentrations of dpm observed in
dieselized underground mines are up to
200 times as high as average
environmental exposures in the most
heavily polluted urban areas and up to
10 times as high as median exposures
estimated for the most heavily exposed
workers in other occupational groups.
The best available evidence indicates
that exposure to such high
concentrations of dpm puts miners at
significantly increased risk of incurring
serious health problems, including lung
cancer.

The goal of the proposed rule is to
reduce underground miner exposures to
attain the highest degree of safety and
health protection that is feasible.

BILLING CODE 4510–43–P
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In underground coal mines, MSHA’s
proposal would require the installation
of high-efficiency filters on diesel-
powered equipment to trap diesel
particles before they enter the mine
atmosphere. Following 18 months of
education and technical assistance by
MSHA after the rule is issued, filters
would first have to be installed on
permissible diesel-powered equipment.
By the end of the following year (i.e., 30
months after the rule is issued), such
filters would also have to be installed on
any heavy-duty outby equipment. No
specific concentration limit would be
established in this sector; the proposed
rule would require that filters be
installed and properly maintained.
Miner awareness training on the hazards
of dpm would also be required.

MSHA is not at this time proposing a
rule applicable to surface mines. As
illustrated in Figure I–1, in certain
situations the concentrations of dpm at
surface mines may exceed those to
which rail, trucking and dock workers
are exposed. Problem areas identified in
this sector include production areas
where miners work in the open air in
close proximity to loader-haulers and
trucks powered by older, out-of-tune
diesel engines, or other confined spaces
where diesel engines are running. The
Agency believes, however, that these
problems are currently limited and
readily controlled through education
and technical assistance. Using tailpipe
exhaust extenders, or directing the
exhaust across the engine fan, can dilute
the high concentrations of dpm that
might otherwise occur in areas
immediately adjacent to mining
equipment. Surface mine operators
using or planning to switch to
environmentally conditioned cabs to
reduce noise exposure to equipment
operators might also be able to
incorporate filtration features that
would protect these miners from high
dpm concentrations as well. Completing
already planned purchases of new
trucks containing cleaner engines may
also help reduce the isolated instances
of high dpm concentrations at such
mines.

The Agency would like to emphasize,
however, that surface miners are
entitled to the same level of protection
as other miners, and that the Agency’s
risk assessment indicates that even
short-term exposures to concentrations
of dpm like those observed may result
in serious health problems.
Accordingly, in addition to providing
education and technical assistance to
surface mines, the Agency will also
continue to evaluate the hazards of
diesel particulate exposure at surface
mines and will take any necessary

action, including regulatory action if
warranted, to help the mining
community minimize any hazards.

(2) How Is This Notice of Proposed
Rulemaking Organized?

The proposed rule for underground
coal mines can be found at the end of
this Notice. The remainder of this
preamble to the proposed rule
(SUPPLEMENTARY INFORMATION) describes
the Agency’s rationale for what is being
proposed.

Part I consists of twelve ‘‘Questions
and Answers.’’ The Agency hopes they
will provide most of the information
you will need to formulate your
comments. The first ten of these
(Section A) cover general topics. The
last two (Section B) contain additional
detail about the proposed rule for the
underground coal sector, and a
discussion of two alternatives on which
the Agency would particularly like
additional comment.

Part II provides some background
information on nine topics that are
relevant to this rulemaking. In order, the
topics covered are: (1) the role of diesel-
powered equipment in mining; (2) the
composition of diesel exhaust and
diesel particulate; (3) measurement of
diesel particulate; (4) reducing soot at
the source—EPA regulation of diesel
engine design; (5) limiting the public’s
exposure to soot—EPA ambient air
quality standards; (6) controlling diesel
particulate emissions in mining—a
toolbox; (7) existing mining standards
that limit miner exposure to
occupational diesel particulate
emissions; (8) how other jurisdictions
are restricting occupational exposure to
diesel soot; and (9) MSHA’s initiative to
limit miner exposure to diesel
particulate—the history of this
rulemaking and related actions.
Appended to the end of this document
is a copy of an MSHA publication,
‘‘Practical Ways to Reduce Exposure to
Diesel Exhaust in Mining—A Toolbox,’’
which includes additional information
on methods for controlling dpm, and a
glossary of terms.

Part III is the Agency’s risk
assessment. The first section presents
the Agency’s data on current dpm
exposure levels in each sector of the
mining industry. The second section
reviews the scientific evidence on the
risks associated with exposure to dpm.
The third section evaluates this
evidence in light of the Mine Act’s
statutory criteria.

Part IV is a detailed section-by-section
explanation and discussion of the
elements of the proposed rule.

Part V is an analysis of whether the
proposed rule meets the Agency’s

statutory obligation to attain the highest
degree of safety or health protection for
miners, with feasibility a consideration.
This part begins with a review of the
law and a profile of the coal industry’s
economic position. This next part
explores the extent to which the
proposed rule is expected to impact
existing concentration levels, reviews
significant alternatives that might
provide more protection than the rule
being proposed but which have not been
adopted by the Agency due to feasibility
concerns, and then discusses the
feasibility of the rule being proposed.
Part V draws upon a computer
simulation of how the proposed rule in
underground coal mines is expected to
impact dpm concentrations;
accordingly, an Appendix to this
discussion provides information about
the simulation methodology. The
simulation method, which can be
performed using a standard spreadsheet
program, can be used to model
conditions and control impacts in any
underground mine; copies of this model
are available to the mining community
from MSHA.

Part VI reviews several impact
analyses which the Agency is required
to provide in connection with a
proposed rulemaking. This information
summarizes a more complete discussion
that can be found in the Agency’s
Preliminary Regulatory Economic
Analysis (PREA). Copies of this
document are available from the Agency
and will be posted on the MSHA Web
site (http://www.msha.gov).

Part VII is a complete list of
publications referenced by the Agency
in the preamble.

(3) What Evidence Does MSHA Have
That Current Underground
Concentrations of DPM Need To Be
Controlled?

The best available evidence MSHA
has at this time is that miners subjected
to an occupational lifetime of dpm
exposure at concentrations we presently
find in underground mines face a
significant risk of material impairment
to their health.

It has been recognized for some time
that miners working in close contact
with diesel emissions can suffer acute
reactions—e.g., eye, nose and throat
irritations—but questions have persisted
as to what component of the emissions
was causing these problems, whether
exposure increased the risk of other
adverse health effects, and the level of
exposure creating health consequences.

In recent years, there has been
growing evidence that it is the very
small respirable particles in diesel
exhaust (dpm) that trigger a variety of
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adverse health outcomes. These
particles are generally less than one-
millionth of a meter in diameter
(submicron), and so can readily
penetrate into the deepest recesses of
the lung. They consist of a core of the
element carbon, with up to 1,800
different organic compounds adsorbed
onto the core, and some sulfates as well.
(A diagram of dpm can be found in part
II of this preamble—see Figure II–3).
The physiological mechanism by which
dpm triggers particular health outcomes
is not yet known. One or more of the
organic substances adsorbed onto the
surface of the core of the particles may
be responsible for some health effects,
since these include many known or
suspected mutagens and carcinogens.
But some or all of the health effects
might also be triggered by the physical
properties of these tiny particles, since
some of the health effects are observed
with high exposures to any ‘‘fine
particulate,’’ whether the particle comes
from diesel exhaust or another source.

There is clear evidence that exposure
to high concentrations of dpm can result
in a variety of serious health effects.
These health effects include: (i) sensory
irritations and respiratory symptoms
serious enough to distract or disable
miners; (ii) death from cardiovascular,
cardiopulmonary, or respiratory causes;
and (iii) lung cancer.

By way of example of the non-cancer
effects, there is evidence that workers
exposed to diesel exhaust during a
single shift suffer material impairment
of lung capacity. A control group of
unexposed workers showed no such
impairment, and workers exposed to
filtered diesel exhaust (i.e., exhaust
from which much of the dpm has been
removed) experienced, on average, only
about half as much impairment.
Moreover, there are a number of studies
quantifying significant adverse health
effects—as measured by lost work days,
hospitalization and increased mortality
rates—suffered by the general public
when exposed to concentrations of fine
particulate matter like dpm far lower
than concentrations to which some
miners are exposed. The evidence from
these fine particulate studies was the
basis for recent rulemaking by the
Environmental Protection Agency to
further restrict the exposure of the
general public to fine particulates, and
the evidence was given very widespread
and close scrutiny before that action
was made final. Of particular interest to
the mining community is that these fine
particulate studies indicate that those
who have pre-existing pulmonary
problems are particularly at risk. Many
individual miners in fact have such
pulmonary problems, and the mining

population as a whole is known to have
such conditions at a higher rate than the
general public.

Although no epidemiological study is
flawless, numerous epidemiological
studies have shown that long term
exposure to diesel exhaust in a variety
of occupational circumstances is
associated with an increased risk of lung
cancer. With only rare exceptions,
involving relatively few workers and/or
observation periods too short to reliably
detect excess cancer risk, the human
studies have consistently shown a
greater risk of lung cancer among
workers exposed to dpm than among
comparable unexposed workers. When
results from the human studies are
combined, the risk is estimated to be
30–40 percent greater among exposed
workers, if all other factors (such as
smoking habits) are held constant. The
consistency of the human study results,
supported by experimental data
establishing the plausibility of a causal
connection, provides strong evidence
that chronic dpm exposure at high
levels significantly increases the risk of
lung cancer in humans.

Moreover, all of the human
occupational studies indicating an
increased frequency of lung cancer
among workers exposed to dpm
involved average exposure levels
estimated to be far below the levels
observed in underground mines. As
noted in Part III, MSHA views
extrapolations from animal experiments
as subordinate to results obtained from
human studies. However, it is
noteworthy that dpm exposure levels
recorded in some underground mines
have been within the exposure range
that produced tumors in rats.

Based on the scientific data available
in 1988, the National Institute for
Occupational Safety and Health
(NIOSH) identified dpm as a probable or
potential human carcinogen and
recommended that it be controlled.
Other organizations have made similar
recommendations.

MSHA carefully evaluated all the
evidence available in light of the
requirements of the Mine Act. Based on
this evaluation, MSHA has reached
several conclusions:

(1) The best available evidence is that
the health effects associated with
exposure to dpm can materially impair
miner health or functional capacity.

(2) At levels of exposure currently
observed in underground mining, many
miners are presently at significant risk
of incurring these material impairments
over a working lifetime.

(3) The reduction in dpm exposures
that is expected to result from
implementation of the proposed rule for

underground coal mines would
substantially reduce the significant risks
currently faced by underground coal
miners exposed to dpm.

MSHA had its risk assessment
independently peer reviewed. The risk
assessment presented here incorporates
revisions made in accordance with the
reviewers recommendations. The
reviewers stated that:
* * * principles for identifying evidence and
characterizing risk are thoughtfully set out.
The scope of the document is carefully
described, addressing potential concerns
about the scope of coverage. Reference
citations are adequate and up to date. The
document is written in a balanced fashion,
addressing uncertainties and asking for
additional information and comments as
appropriate. (Samet and Burke, Nov. 1997).

The proposed rule would reduce the
concentration of one type of fine
particulate in underground coal mines—
that from diesel emissions—but would
not explicitly control miner exposure to
other fine airborne particulates present
underground. In light of the evidence
presented in the Agency’s risk
assessment on the risks that fine
particulates in general may pose to the
mining population, MSHA would
welcome comments as to whether the
Agency should also consider restricting
the exposure of underground coal
miners to all fine particulates, regardless
of the source.

(4) Aren’t NIOSH and the NCI Working
on a Study That Will Provide Critical
Information? Why Proceed Before the
Evidence Is Complete?

NIOSH and the National Cancer
Institute (NCI) are collaborating on a
cancer mortality study that will provide
additional information about the
relationship between dpm exposure
levels and disease outcomes, and about
which components of dpm may be
responsible for the observed health
effects. The study is projected to take
about seven years. The protocol for the
study was recently finalized.

The information the study is expected
to generate will be a valuable addition
to the scientific evidence on this topic.
But given its conclusions about
currently available evidence, MSHA
believes the Agency needs to take action
now to protect miners’ health.
Moreover, as noted by the Supreme
Court in an important case on risk
involving the Occupational Safety and
Health Administration, the need to
evaluate risk does not mean an agency
is placed into a ‘‘mathematical
straightjacket.’’ Industrial Union
Department, AFL-CIO v. American
Petroleum Institute, 448 U.S. 607, 100
S.Ct. 2844 (1980). The Court noted that
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when regulating on the edge of scientific
knowledge, absolute scientific certainty
may not be possible, and ‘‘so long as
they are supported by a body of
reputable scientific thought, the Agency
is free to use conservative assumptions
in interpreting the data * * * risking
error on the side of overprotection
rather than underprotection.’’ (Id. at
656). This advice has special
significance for the mining community,
because a singular historical factor
behind the enactment of the current
Mine Act was the slowness in coming
to grips with the harmful effects of other
respirable dust (coal dust).

It is worth noting that while the
cohort selected for the NIOSH/NCI
study consists of underground miners
(specifically, underground metal and
nonmetal miners), this choice is in no
way linked to MSHA’s regulatory
framework or to miners in particular.
This cohort was selected for the study
because it provides the best population
for scientists to study. For example, one
part of the study would compare the
health experiences of miners who have
worked underground in mines with long

histories of diesel use with the health
experiences of similar miners who work
in surface areas where exposure is
significantly lower. Since the general
health of these two groups is very
similar, this will help researchers to
quantify the impacts of diesel exposure.
No other population is as easy to study
for this purpose. But as with any such
epidemiological study, the insights
gained are not limited to the specific
population used in the study. Rather,
the study will provide information
about the relationship between exposure
and health effects that will be useful in
assessing the risks to any group of
workers in a dieselized industry.

(5) What are the Impacts of the Proposed
Rule?

Costs. Tables I–1 and I–2 provide cost
information. Some explanation is
necessary.

Costs consist of two components:
‘‘initial’’ costs (e.g., capital costs for
equipment, or the one-time costs of
developing a procedure), which are then
amortized over a period of years in
accordance with a standardized formula
to provide an ‘‘annualized’’ cost; and

‘‘annual’’ costs that occur every year
(e.g., maintenance or training costs).
Adding together the ‘‘annualized’’
initial costs and the ‘‘annual’’ costs
provides the per year costs for the rule.

It should be noted that in amortizing
the initial costs, a net present value
factor was applied to certain costs: those
associated with provisions where mine
operators do not have to make capital
expenditures until some period of time
after the effective date. Detailed
information on this point is contained
in the Agency’s Preliminary Regulatory
Economic Analysis (PREA), as are the
Agency’s cost assumptions.

The costs per year to the underground
coal industry are about $10 million.
Diesel equipment manufacturers would
have a yearly cost increase of about
$14,000.

The Agency spent considerable time
developing its cost assumptions, which
are discussed in detail in the Agency’s
PREA, and would encourage the mining
community to provide detailed
comments in this regard so as to ensure
these cost estimates are as accurate as
possible.

TABLE I–1.—COMPLIANCE COSTS FOR UNDERGROUND COAL MINES

[Dollars + 1,000]

Detail

Large mines (≥20) Small mines (<20) Total mines

Total
[Col. B+C] Annualized Annual Total

[Col. E+F] Annualized Annual Total
[Col. H+I] Annualized Annual

(A) (B) (C) (D) (E) (F) (G) (H) (I)

75.1915 ........................ $9 $9 $0 $1 $1 $0 $10 $10 $0
72.500(a) ...................... 4,910 457 4,453 95 22 73 5,005 479 4,526
72.500(b) ...................... 4,768 1,335 3,433 22 12 10 4,790 1,347 3,443
72.510 .......................... 185 0 185 1 0 1 186 0 186
75.371qq and 75.370 ... 1 1 0 1 1 0 2 2 0

Total ...................... 9,873 1,802 8,071 120 36 84 9,993 1,838 8,155

TABLE I–2.—COMPLIANCE COSTS FOR
MANUFACTURERS

[Dollars×1,000]

Detail

Manufacturers

Total
[Col.
B+C]

Annualized Annual

(A) (B) (C)
Part 36 ......... $14 $14 $0

Total ..... $14 $14 $0

As required by the Regulatory
Flexibility Act, MSHA has performed a
review of the effects of the proposed
rule on ‘‘small entities’’. The results—
including information about the average
cost for mines in each sector with less
than 500 employees and mines in each

sector with less than 20 miners—are
summarized in response to Question 7.

Paperwork

Tables I–3 and I–4 show additional
paperwork burden hours which the
proposed rule would require. Only
those existing or proposed regulatory
requirements which would, as a result
of this rulemaking, result in new burden
hours, are noted. The costs for these
paperwork burdens, a subset of the
overall costs of the proposed rule, are
specifically noted in part VII of the
Agency’s PREA. Each of these tables
shows separately the burden hours on
smaller mines—those with less than 20
miners. Table I–3 shows additional
paperwork burden hours for
underground coal operators.

TABLE I–3.—UNDERGROUND COAL
MINE BURDEN HOURS

Detail Large Small Total

75.370 ............... 93 9 102
75.371 ............... 158 8 166
75.1915 ............. 12 1 13
72.510 ............... 347 5 352

Total ........... 610 23 633

Table I–4 shows the additional
burden hours for diesel equipment
manufacturers. All of the manufacturer
burden hours will occur once and not
recur annually.
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TABLE I–4.—DIESEL EQUIPMENT
MANUFACTURERS BURDEN HOURS

Detail Total

Part 36 .............................................. 520

Total ........................................... 520

Benefits
The proposed rule would reduce the

exposure of underground miners to
dpm, thereby reducing the risk of
adverse health effects and their
concomitant effects.

The risks being addressed by this
rulemaking arise because some miners
are exposed to high concentrations of
the very small particles produced by
engines that burn diesel fuel. As
discussed in part II of the preamble,
diesel powered engines are used
increasingly in underground mining
operations because they permit the use
of mobile equipment and provide a full
range of power for both heavy-duty and
light-duty operations (i.e., for
production equipment and support
equipment, respectively), while
avoiding the explosive hazards
associated with gasoline. But
underground mines are confined spaces
which, despite ventilation requirements,
tend to accumulate significant
concentrations of particles and gases—
both those produced by the mine itself
(e.g., methane gas and coal dust
liberated by mining operations) and
those produced by equipment used in
the mine.

As discussed in MSHA’s risk
assessment (part III of this preamble),
the concentrations of diesel particulates
to which some underground miners are
currently exposed are significantly
higher than the concentrations reported
for other occupations involving the use
of dieselized equipment; and at such
concentrations, exposure to dpm by
underground miners over a working
lifetime is associated with an excess risk
of a variety of adverse health effects.

The nature of the adverse health
effects associated with such exposures
suggests the nature of the savings to be
derived from controlling exposure.
Acute reactions can result in lost
production time for the operator and
lost pay (and perhaps medical expenses)
for the worker. Hospital care for acute
breathing crises or cancer treatment can
be expensive, result in lost income for
the worker, lost income for family
members who need to provide care and
lost productivity for their employers,
and may well involve government
payments (e.g., Social Security
disability and Medicare). Serious illness
and death lead to long term income

losses for the families involved, with the
potential for costs from both employers
(e.g., workers’ compensation payouts,
pension payouts) and society as a whole
(e.g., government assisted aid programs).

The information available to the
Agency suggests that as exposure is
reduced, so are the adverse health
consequences. For example, data
collected on the effects of
environmental exposure to fine
particulates suggest that reducing
occupational dpm exposures by as little
as 75 µg/m3 (roughly corresponding to
a reduction of 25 µg/m3 in 24-hour
ambient atmospheric concentration)
could lead to significant reductions in
the risk of various acute responses,
including mortality. And chronic
occupational exposure has been linked
to an estimated 30 to 40 percent
increase in the risk of lung cancer. All
the quantitative risk models reviewed
by NIOSH suggest excess risks of lung
cancer of more than one per thousand
for miners who have long-term
occupational exposures to dpm
concentrations in excess of 1000 µg/m3,
and the epidemiologically-based risk
estimates suggest higher risks.

Despite these quantitative indications,
quantification of the benefits is difficult.
Although increased risk of lung cancer
has been shown to be associated with
dpm exposure among exposed workers,
a conclusive dose-response relationship
upon which to base quantification of
benefits has not been demonstrated. The
Agency nevertheless intends, to the
extent it can, to develop an appropriate
analysis quantifying benefits in
connection with the final rule.

The Agency does not have much
experience in quantifying benefits in the
case of a proposed health standard
(other than its recent proposal on
controlling mining noise, where years of
compliance data and hearing loss
studies provide a much more complete
quantitative picture than with dpm).
MSHA therefore welcomes suggestions
for the appropriate approach to use to
quantify the benefits likely to be derived
from this rulemaking. Please identify
scientific studies, models, and/or
assumptions suitable for estimating risk
at different exposure levels, and data on
numbers of miners exposed to different
levels of dpm.

(6) Did MSHA Actively Consider
Alternatives to What Is Being Proposed?

Yes. Once MSHA determined that the
evidence of risk required a regulatory
action, the Agency considered a number
of alternative approaches, the most
significant of which are reviewed in part
V of the preamble.

The consideration of options
proceeded in accordance with the
requirements of section 101(a)(6)(A) of
the Federal Mine Safety and Health Act
of 1977 (the ‘‘Mine Act’’). In
promulgating standards addressing toxic
materials or harmful physical agents,
the Secretary must promulgate
standards which most adequately
assure, on the basis of the best available
evidence, that no miner will suffer
material impairment of health over his/
her working lifetime. In addition, the
Mine Act requires that the Secretary,
when promulgating mandatory
standards pertaining to toxic materials
or harmful physical agents, consider
other factors, such as the latest scientific
data in the field, the feasibility of the
standard and experience gained under
the Mine Act and other health and
safety laws. Thus, the Mine Act requires
that the Secretary, in promulgating a
standard, attain the highest degree of
health and safety protection for the
miner, based on the ‘‘best available
evidence,’’ with feasibility a
consideration.

As a result, MSHA seriously
considered a number of alternatives that
would, if adopted as part of the
proposed rule, have provided increased
protection—and would also have
significantly increased costs. For
example, in underground coal mining,
the Agency considered requiring
filtration of all light-duty diesel-
powered equipment as well as heavier
equipment. The Agency concluded,
however, that such an approach may not
be feasible for the underground coal
sector at this time, although it is asking
for comment as to whether there are
some types of light-duty equipment
whose dpm emissions should, and
could feasibly, be controlled.

MSHA also considered alternatives
that would have led to a significantly
lower-cost proposal, e.g., increasing the
time for mine operators to come into
compliance. However, based on the
current record, MSHA has tentatively
concluded that such approaches would
not be as protective as those being
proposed, and that the approach
proposed is both economically and
technologically feasible. As a result, the
Agency has not proposed to adopt these
alternatives.

MSHA also explored whether to
permit the use of administrative
controls (e.g., rotation of personnel) and
personal protective equipment (e.g.,
respirators) to reduce the diesel
particulate exposure of miners. It is
generally accepted industrial hygiene
practice, however, to eliminate or
minimize hazards at the source before
resorting to personal protective
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equipment. Moreover, such a practice is
generally not considered acceptable in
the case of carcinogens since it merely
places more workers at risk.

Other alternatives the Agency
considered include: establishing a
concentration limit for dpm in this
sector; requiring filters on some light-
duty equipment; and looking at the filter
and the engine as a package that has to
meet a particular emission standard,
instead of requiring that all engines be
equipped with a high-efficiency filter.
The Agency also spent a considerable
amount of time studying whether it
could simply propose a concentration
limit for dpm in underground coal
mines. Such an approach would provide
underground coal mine operators with
flexibility to elect any combination of
engineering controls they wish as long
as the concentration of dpm in the mine
remains below a set level. At this point
in the rulemaking process, however, the
Agency is not confident that there is a
measurement method for dpm that will
provide accurate, consistent and
verifiable results at lower concentration
levels in underground coal mines. As
discussed in detail in part II of this
preamble, the problem arises because
coal dust contains organic compounds
that might be mistaken for dpm in the
methods otherwise validated for use at
lower dpm concentrations. The Agency
is continuing to explore questions about
the measurement of dpm in
underground coal mines in consultation
with NIOSH, and welcomes comment
on this issue. However, at this point in
the rulemaking process, the Agency
believes that the best approach for the
underground coal sector would be one
which does not require measurement of
ambient dpm levels to ascertain
compliance or noncompliance.

MSHA recognizes that a specification
standard does not allow for the use of
future alternative technologies that
might provide the same or enhanced
protection at the same or lower cost.
MSHA welcomes comment as to
whether and how the proposed rule can
be modified to enhance its flexibility in
this regard.

MSHA did consider two alternative
specification standards which would
provide somewhat more flexibility for
coal mine operators. Alternative 1
would treat the filter and engine as a
package that has to meet a particular
emission standard. Instead of requiring
that all engines be equipped with a
high-efficiency filter, this approach
would provide some credit for the use
of lower-polluting engines. Alternative 2
would also provide credit for mine
ventilation beyond that required. The
Agency believes, however, that these

alternatives may be less protective of
miners than the alternative proposed,
although it is seeking comment on them.
More information on these two
alternatives can be found in this part in
response to Question 12.

(7) What Will the Impact Be on the
Smallest Underground Coal Mines?
What Consideration Did MSHA Give to
Alternatives for the Smallest Mines?

The Regulatory Flexibility Act
requires MSHA and other regulatory
agencies to conduct a review of the
effects of proposed rules on small
entities. That review is summarized
here; a copy of the full review is
included in part VI of this preamble,
and in the Agency’s PREA. The Agency
encourages the mining community to
provide comments on this analysis.

The Small Business Administration
generally considers a small mining
entity to be one with less than 500
employees. MSHA has traditionally
defined a small mine to be one with less
than 20 miners, and has focused special
attention on the problems experienced
by such mines in implementing safety
and health rules, e.g., the Small Mine
Summit, held in 1996. Accordingly,
MSHA has separately analyzed the
impact of the proposed rule on mines
with 500 employees or less, and those
with less than 20 miners.

Table I–5 summarizes MSHA’s
estimates of the average costs of the
proposed rule to a small underground
coal entity or small underground coal
mine.

TABLE I–5.—AVERAGE COST PER
SMALL UNDERGROUND COAL MINE

Size UG Coal
<500

UG Coal
<20

Cost per mine ........... $58,000 $8,000

Pursuant to the Regulatory Flexibility
Act, MSHA must determine whether the
costs of the proposed rule constitute a
‘‘significant impact on a substantial
number of small entities.’’ Pursuant to
the Regulatory Flexibility Act, if an
Agency determines that a proposed rule
does not have such an impact, it must
publish a ‘‘certification’’ to that effect.
In such a case, no additional analysis is
required (5 U.S.C. 605).

In evaluating whether certification is
appropriate, MSHA utilized a
‘‘screening test,’’ comparing the costs of
the proposal to the revenues of the
sector involved (only the revenues for
underground coal mines are used in this
calculation). For underground coal
mines, the costs of the proposed rule
appear to be significantly less than one

percent of revenues—even for mines
with less than 20 miners. As a result,
MSHA is certifying that the proposed
rule for underground coal mines does
not have a ‘‘significant impact on a
substantial number of small entities,’’
and has performed no further analyses.

In promulgating standards, MSHA
does not reduce protection for miners
employed at small mines. But MSHA
does consider the impact of its
standards on even the smallest mines
when it evaluates the feasibility of
various alternatives. For example, a
major reason why MSHA concluded it
needed to stagger the effective dates of
some of the requirements in the
proposed rule is to ensure that it would
be feasible for the smallest mines to
have adequate time to come into
compliance.

Consistent with recent amendments to
the Regulatory Flexibility Act under
SBREFA (the Small Business Regulatory
Enforcement Fairness Act), MSHA has
already started considering actions it
can take to minimize the anticipated
compliance burdens of this proposed
rule on smaller mines. For example, no
equipment filtration would be required
for 18 months, and during that time, the
Agency plans to provide extensive
compliance assistance to the mining
community. MSHA intends to focus its
efforts on smaller operators in particular
to provide training to them and
technical assistance on available
controls. The Agency will also issue a
compliance guide, and continue its
current efforts to disseminate
educational materials and software.
Comment is invited on whether
compliance workshops or other such
approaches would be valuable.

(8) Why Would the Proposed Rule
Require Special Training for
Underground Miners Exposed to Diesel
Exhaust? And Why Does the Proposed
Rule Not Address Medical Surveillance
and Medical Removal Protection for
Affected Miners?

Training. Diesel particulate exposure
has been linked to a number of serious
health hazards, and the Agency’s risk
assessment indicates that the risks
should be reduced as much as feasible.
It has been the experience of the mining
community that miners must be active
and committed partners along with
government and industry in
successfully reducing these risks.
Therefore, training miners as to
workplace risks is a key component of
mine safety and health programs. This
rulemaking continues this approach.

Specifically, pursuant to proposed
§ 72.510, any underground coal miner
‘‘who can reasonably be expected to be
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exposed to diesel emissions’’ would
have to receive instruction in: (a) the
health risks associated with dpm
exposure; (b) in the methods used in the
mine to control diesel particulate
concentrations; (c) in identification of
the personnel responsible for
maintaining those controls; and (d) in
actions miners must take to ensure the
controls operate as intended. The
training is to be provided annually in all
mines using diesel-powered equipment,
and is to be provided without charge to
the miner.

MSHA does not expect this training to
be a significant new burden for mine
operators. The training required can be
provided at minimal cost and with
minimal disruption. The proposal
would not require any special
qualifications for instructors, nor would
it specify the minimum hours of
instruction. The purpose of the
proposed requirement is miner
awareness, and MSHA believes this can
be accomplished by operators in a
variety of ways. In mines that have
regular safety meetings before the shift
begins, devoting one of those meetings
to the topic of diesel particulate would
probably be a very easy way to convey
the necessary information. Mines not
having such a regular meeting can
schedule a ‘‘toolbox’’ talk for this
purpose. MSHA will be developing an
outline of educational material that can
be used in these settings. Simply
providing miners with a copy of
MSHA’s toolbox, and reviewing how to
use it, can cover several of the training
requirements.

Operators may choose to include
required dpm training under part 48
training as an additional topic. Part 48
training plans, however, must be
approved. There is no existing
requirement that part 48 training
include a discussion of the hazards and
control of diesel emissions. While mine
operators are free to cover additional
topics during the part 48 training
sessions, the topics that must be covered
during the required time frame may
make it impracticable to cover other
matters within the prescribed time
limits. Where the time is available in
mines using diesel-powered equipment,
operators should be free to include the
dpm instruction in their proposed part
48 training plans. The Agency does not
believe special language in the proposed
rule is needed to permit this action
under part 48, but welcomes comment
in this regard.

The proposal would not require the
mine operator to separately certify the
completion of the diesel particulate
training, but some evidence that the
training took place would have to be

produced upon request. A serial log
with the employee’s signature is a
perfectly acceptable practice in this
regard.

Medical surveillance
Another important source of

information that miners and operators
can use to protect health can come from
medical surveillance programs. Such
programs provide for medical
evaluations or tests of miners exposed to
particularly hazardous substances, at
the operator’s expense, so that a miner
exhibiting symptoms or adverse test
results can receive timely medical
attention, ensure that personal exposure
is reduced as appropriate and controls
are reevaluated. Sometimes, to ensure
that this source of information is
effective, medical removal (transfer)
protection must also be required.
Medical transfer may address protection
of a miner’s employment, a miner’s pay
retention, a miner’s compensation, and
a miner’s right to opt for medical
removal.

As a general rule, medical
surveillance programs have been
considered appropriate when the
exposures are to potential carcinogens.
MSHA has in fact been considering a
generic requirement for medical
surveillance as part of its air quality
standards rulemaking. And MSHA
recently proposed a medical
surveillance program for hearing, as part
of the Agency’s proposed rule on noise
exposure. (61 FR 66348).

MSHA is not proposing such a
program for dpm at this time because it
is still gathering information on this
issue. The Agency, however, welcomes
comments regarding this issue and also,
on medical removal.

Specifically, the Agency would
welcome comment on the following
questions: (a) what kinds of
examinations or tests would be
appropriate to detect whether miners
are suffering ill effects as a result of dpm
exposure; (b) the qualifications of those
who would have to perform such
examinations or tests and their
availability; (c) whether such
examinations or tests need to be
provided and how frequently once the
provisions of the rule are in effect; and
(d) whether medical removal
protections should be a component of a
medical surveillance program.

(9) What Are the Major Issues on Which
MSHA Wants Comments?

MSHA wants the benefit of your
experience and expertise: whether as a
miner or mine operator in any mining
sector; a manufacturer of diesel-
powered engines, equipment, or

emission control devices; or as a
scientist, doctor, engineer, or safety and
health professional. MSHA intends to
review and consider all comments
submitted to the Agency.

The following list reflects some topics
on which the Agency would particularly
like information; requests for
information on other topics can be
found throughout the preamble.

(a) Assessment of Risk/Benefits of the
Rule. Part III of this preamble reviews
information that the Agency has been
able to obtain to date on the risks of
dpm exposure to miners. The Agency
welcomes your comments on the
significance of the material already in
the record, and any information that can
supplement the record. For example,
additional information on existing and
projected exposures to dpm and to other
fine particulates in various mining
environments would be useful in getting
a more complete picture of the situation
in various parts of the mining industry.
Additional information on the health
risks associated with exposure to dpm—
especially observations by trained
observers or studies of acute or chronic
effects of exposure to known levels of
dpm or fine particles in general,
information about pre-existing health
conditions in individual miners or
miners as a group that might affect their
reactions to exposures to dpm or other
fine particles, and information about
how dpm affects human health—would
help provide a more complete picture of
the relationship between current
exposures and the risk of health
outcomes. Information on the costs to
miners, their families and their
employers of the various health
problems linked to dpm exposure, and
the prevalence thereof, would help
provide a more complete picture of the
benefits to be expected from reducing
exposure. And as discussed in response
to Question and Answer 5, the Agency
would welcome advice about the
assumptions and approach to use in
quantifying the benefits to be derived
from this rule.

(b) Proposed Rule. Part IV of this
preamble reviews each provision of the
proposed rule, part V discusses the
economic and technological feasibility
of the proposed rule, and part VI
reviews the projected impacts of the
proposed rule. The Agency would
welcome comments on each of these
topics.

The Agency would like your thoughts
on the specific alternative approaches
discussed in part V. The options
discussed include: establishing a
concentration limit for dpm in this
sector; requiring filters on some light-
duty equipment; and looking at the filter
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and the engine as a package that has to
meet a particular emission standard,
instead of requiring that all engines be
equipped with a high-efficiency filter.

The Agency would also like your
thoughts on more specific changes to
the proposed rule that should be
considered. The Agency is also
interested in obtaining as many
examples as possible as to the specific
situation in individual mines: the
composition of the diesel fleet, what
controls cannot be utilized due to
special conditions, and any studies of
alternative controls using the computer
spreadsheet described in the Appendix
to part V of this preamble. (See
Adequacy of Protection and the
Feasibility of the Proposed Rule).
Information about the availability and
costs of various control technologies
that are being developed (e.g., high-
efficiency ceramic filters), experience
with the use of available controls, and
information that will help the Agency
evaluate alternative approaches for
underground coal mines would be most
welcome. And the Agency would
appreciate information about any
unusual situations that might warrant
the application of special provisions.

(c) Compliance Guidance. The
Agency welcomes comments on any
topics on which initial guidance ought
to be provided as well as any alternative
practices which MSHA should accept
for compliance before various
provisions of the rule go into effect.

(d) Minimizing Adverse Impact of the
Proposed Rule. The Agency has set forth
its assumptions about impacts (e.g.,
costs, paperwork, and impact on smaller
mines in particular) in some detail in
this preamble and in the PREA, and
would welcome comments on the
methodology. Information on current
operator equipment replacement
planning cycles, tax, State requirements,
or other information that might be
relevant to purchasing new engines or
control technology would likewise be
helpful.

(10) When Will the Rule Become
Effective? Will MSHA Provide Adequate
Guidance Before Implementing the
Rule?

Some requirements of the proposed
rule would go into effect 60 days after
the date of promulgation: specifically,
the requirement to provide basic hazard
training to miners who are exposed
underground to dpm.

The next set of requirements would go
into effect 18 months after the date the
rule is promulgated. Underground coal
mines would have to properly filter
permissible diesel-powered equipment.

A year later (30 months after the date
of promulgation), underground coal

mines would have to properly filter
heavy-duty nonpermissible equipment.

MSHA intends to provide
considerable technical assistance and
guidance to the mining community
before the various requirements go into
effect, and be sure MSHA personnel are
fully trained in the requirements of the
rule. A number of actions have already
been taken toward this end. The Agency
held workshops on this topic in 1995
which provided the mining community
an opportunity to share advice on how
to control dpm concentrations. The
Agency has published a ‘‘toolbox’’ of
methods available to mining operators
to achieve reductions in dpm
concentration (a copy is attached as an
Appendix at the end of this document).
The ‘‘toolbox’’ provides information on
filter technology as well as on other
actions mine operators can take to
address dpm concentrations in their
mines.

The Agency is committed to issuing a
compliance guide for mine operators
providing additional advice on
implementing the rule. MSHA would
welcome suggestions on matters that
should be discussed in such a guide.
MSHA would also welcome comments
on other actions it could take to
facilitate implementation, and in
particular whether a series of additional
workshops would be useful.

(B) Additional Information About the
Proposed Rule for Underground Coal
Mines

(11) More Specifically, What Changes
Does the Proposal Make to the Current
Rules on the Use of Diesel-Powered
Equipment in Underground Coal Mines?

The proposal builds on the changes to
part 75 recently adopted in MSHA’s
final rule ‘‘Approval, Exhaust Gas
Monitoring, and Safety Requirements
for the Use of Diesel-Powered
Equipment in Underground Coal
Mines.’’ (61 FR 55412). As a result of
these changes, grounded in safety
considerations, underground coal mines
must already comply with certain rules
that have the added benefit of reducing
harmful dpm emissions from diesel-
powered equipment. These include a
requirement that only low-sulfur diesel
fuel be used underground, restrictions
on the idling of diesel-powered
equipment, ensuring that maintenance
of diesel-powered equipment is
performed only by qualified personnel,
weekly tailpipe tests to ensure the
engines are operating in approved
condition, and the requirement that the
entire diesel fleet have approved
engines before the year 2000.

The proposed rule would require that
all permissible and heavy-duty
nonpermissible diesel-powered
equipment be equipped with a filtration
system that is capable of removing, on
average, at least 95% by mass of the
particulate emissions coming out of that
equipment. These filtration systems
must be properly maintained in
accordance with manufacturer
specifications (e.g., changing paper
filters at the proper interval). The
permissible equipment must be so
equipped within 18 months after the
rule becomes final, and the heavy-duty
nonpermissible equipment a year later.
The mine’s ventilation and dust control
plan must contain a list of the diesel-
powered equipment used in the mine
and the filtration system installed on
each. And finally, to ensure they can
better contribute to dpm reduction
efforts, underground coal miners who
can reasonably be expected to be
exposed to diesel emissions must be
annually trained about the hazards
associated with that exposure and in the
controls being used by the operator to
reduce dpm concentrations.

The proposed rule would not require
the filtration of light-duty outby diesel
equipment. It would not establish a
concentration limit for dpm in
underground coal mines. And it would
not require monitoring of dpm
concentrations by either operators or
MSHA in this sector. Enforcement of the
proposed requirements would be
through observation by MSHA
inspectors who are at the mine on a
regular basis.

MSHA’s decision to propose this
approach for underground coal mines
was driven by two interrelated
considerations.

First, the Agency is not confident that
there is a measurement method for dpm
that will provide accurate, consistent
and verifiable results at lower
concentration levels in underground
coal mines. The available measurement
methods for determining dpm
concentrations in underground coal
mines were carefully evaluated by the
Agency, including field testing, before
the Agency reached this conclusion.
The problems are discussed in detail in
part II of this preamble. Basically, coal
dust contains compounds that could be
mistaken for dpm in the methods that
do not exclude organic materials. A size
selective impactor minimizes this
problem by screening out most of the
coal dust before it can reach the filter
medium, but doesn’t eliminate it.
Measuring only the elemental carbon in
a sample does provide a way to
distinguish dpm from coal dust, but
there remain questions about whether a
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measured amount of elemental carbon
can be equated to a prescribed amount
of whole diesel particulate under the
variable engine conditions found in
actual mining environments. The
Agency is continuing to explore
questions about the measurement of
dpm in underground coal mines in
consultation with NIOSH, and
welcomes comment on this issue. If at
some future time it can be established
that a particular measurable component
of dpm is responsible for the adverse
health effects observed (e.g., the
elemental carbon cores), the Agency
would evaluate the question of
measurement in that light.

Second, filtration systems for the
diesel equipment used in this sector are
readily available, and if properly
maintained can provide generally
consistent, highly effective elimination
of dpm from underground mine
atmospheres.

MSHA’s analysis of dpm emissions in
underground coal mines indicates that it
is currently the permissible equipment
used for face haulage that contributes
most to high dpm levels, but heavy-duty
outby equipment can also generate
significant dpm emissions. On the
permissible equipment, paper type
filtration systems can be installed
directly on the tailpipes; accordingly,
the rule would require these filters to be
installed within 18 months. In the case
of outby equipment, scrubbers and
cooling system upgrades will need to be
added to cool the exhaust before the
paper type filters can be installed, or a
dry technology system would need to be
utilized. The Agency is seeking
information as to whether ceramic
filters might achieve the required
efficiency once a market develops; but
at this time, the proposal would provide
an additional year for the
nonpermissible equipment to be
converted and fitted with high
efficiency filtration systems.

The proposed rule specifies a
laboratory method that equipment
manufacturers can use to determine
whether a particular filtration system
meets the requirement that the system
be at least 95% effective in removing
dpm.

(12) Why not Consider a more Flexible
Approach Under Which the Filter, the
Engine, and the Available Ventilation is
Viewed as a Single System that has to
Meet a Defined Emission Limit?

MSHA has considered some
approaches along this line. The Agency
welcomes comment on such ideas so it
can better evaluate whether they
provide more protection to underground
coal miners.

Alternative 1 would in essence
provide some credit in filter selection to
those operators who use less polluting
engines. Under this approach, the
engine and aftertreatment filter would
be bench tested as a unit; and if the
emissions from the unit are below a
certain level per defined volume of air
(e.g., 120DPM µg/m3), the package would
be acceptable without regard to the
efficiency of just the filter component.
Alternative 2 would also provide credit
in filter selection for extra ventilation
used in an underground coal mine. If
the bench test of the combined engine
and filter package was conducted at the
name plate ventilation, a mine’s use of
more than that level of ventilation
would be factored into the calculation of
what package would be acceptable.

One practical effect of these
alternatives would be to permit some
operators to save the costs of installing
heat exchangers or other exhaust-
cooling devices on nonpermissible
heavy-duty equipment. Such devices are
necessary in order for this equipment to
be fitted with paper filters—and as
noted in response to the previous
question, at the moment these are the
only filters on the market capable of
providing 95% and more filtration
capability.

The appropriateness of Alternative 1
is not clear. With the proper equipment
to cool the exhaust, a 95% paper filter
can be installed on any piece of heavy-
duty equipment in coal mines—and of
course directly on any permissible piece
of equipment. And, as indicated herein,
the Agency is tentatively concluding
that such an approach is economically
feasible as well. Installing a 95%
efficient filter on an engine lowers the
dpm concentration in the mine more
than would installing a less efficient
filter. Hence for engines whose
emissions can, with a 95% filter, be
reduced below 120DPM µg/m3 or
whatever other dpm limit is set under
such an approach, the alternative
approach may result in less miner
protection.

Moreover, it is not clear to MSHA that
95% filtration of the engines used on
the majority of permissible machines in
underground coal mines can meet an
emissions limit of 120DPM µg/m3 using
MSHA’s name plate ventilation. These
engines are of older design and produce
higher concentrations of diesel
particulate. Thus adopting a rule with
such an emissions limit would in effect
require these engines to be replaced
with cleaner engines. Of course, it
follows that such a rule would be more
costly than the one proposed, because it
would require the 95% filters plus the
replacement of these engines.

The second alternative appears to be
less protective in all cases. To provide
mines who need extra ventilation for
other reasons (e.g., to keep methane in
check) with a credit for this fact in
determining the required filter
efficiency would not reduce dpm
concentrations as much as simply
requiring a 95% filter.

The Agency welcomes comments on
these approaches and information that
will help it assess them in light of the
requirements of the Mine Act.

II. Background Information

This part provides the context for this
rulemaking. The nine topics covered
are:

(1) The role of diesel-powered
equipment in mining;

(2) Diesel exhaust and diesel
particulate;

(3) Methods available to measure
DPM;

(4) Reducing soot at the source—
engine standards;

(5) Limiting the public’s exposure to
soot — ambient air quality standards;

(6) Controlling diesel particulate
emissions in mining—a toolbox;

(7) Existing mining standards that
limit miner exposure to occupational
diesel particulate emissions;

(8) How other jurisdictions are
restricting occupational exposure to
diesel soot; and

(9) MSHA’s initiative to limit miner
exposure to diesel particulates—the
history of this rulemaking and related
actions.

In addition, an Appendix at the end
of this document reprints a recent
MSHA publication, ‘‘Practical Ways to
Reduce Exposure to Diesel Exhaust in
Mining—A Toolbox’’, which contains
considerable information of interest in
this rulemaking.

These topics will be of interest to the
entire mining community, even though
this rulemaking is specifically confined
to the underground coal sector.

(1) The Role of Diesel-Powered
Equipment in Mining. Diesel engines
now power a full range of mining
equipment on the surface and
underground, in both coal and in metal/
nonmetal mining. Many in the mining
industry believe that diesel-powered
equipment has a number of productivity
and safety advantages over electrically-
powered equipment. Nevertheless,
concern about miner safety and health
has slowed the spread of this
technology, and in certain states
resulted in a complete ban on its use in
underground coal mines. As the
industry has moved to realize the
advantages this equipment may provide,
the Agency has endeavored to address



17502 Federal Register / Vol. 63, No. 68 / Thursday, April 9, 1998 / Proposed Rules

the miner safety and health issues
presented.

Historical Patterns of Use

The diesel engine was developed in
1892 by the German engineer Rudolph
Diesel. It was originally intended to
burn coal dust with high
thermodynamic efficiency. Later, the
diesel engine was modified to burn
middle distillate petroleum (diesel fuel).
In diesel engines, liquid fuel droplets
are injected into a prechamber or
directly into the cylinder of the engine.
Due to compression of air in the
cylinder the temperature rises high
enough in the cylinder to ignite the fuel.

The first diesel engines were not
suited for many tasks because they were
too large and heavy (weighing 450 lbs.
per horsepower). It was not until the
1920’s that the diesel engine became an
efficient lightweight power unit. Since
diesel engines were built ruggedly and
had few operational failures, they were
used in the military, railway, farm,
construction, trucking, and busing
industries. The U.S. mining industry
was slow, however, to begin using these
engines. Thus, when in 1935 the former
U.S. Bureau of Mines published a
comprehensive overview on metal mine
ventilation (McElroy, 1935), it did not
even mention ventilation requirements
for diesel-powered equipment. By
contrast, the European mining
community began using these engines in
significant numbers, and various reports
on the subject were published during
the 1930’s. According to a 1936
summary of these reports (Rice, 1936),
the diesel engine had been introduced
into German mines by 1927. By 1936,
diesel engines were used extensively in
coal mines in Germany, France, Belgium
and Great Britain. Diesel engines were
also used in potash, iron and other
mines in Europe. Their primary use was
in locomotives for hauling material.

It was not until 1939 that the first
diesel engine was used in the United
States mining industry, when a diesel
haulage truck was used in a limestone
mine in Pennsylvania, and not until
1946 was a diesel engine used in coal
mines. Today, however, diesel engines
are used to power a wide variety of
equipment in all sectors of U.S. mining,
such as: air compressor; ambulance;
crane truck; ditch digger; foam machine;
forklift; generator; grader; haul truck;
load-haul-dump machine; longwall
retriever; locomotive; lube unit; mine
sealant machine; personnel car;
hydraulic pump machine; rock dusting
machine; roof/floor drill; shuttle car;
tractor; utility truck; water spray unit
and welder.

Estimates of Current Use

Estimates of the current inventory of
diesel engines in the mining industry
are displayed in Table II–1. Not all of
these engines are in actual use. Some
may be retained rather than junked, and
others are spares. MSHA has been
careful to take this into account in
developing cost estimates for this
proposed rule; its assumptions in this
regard are detailed in the Agency’s
PREA.

TABLE II–1.—DIESEL EQUIPMENT IN
THREE MINING SECTORS

Mine type No.
Mines 2

No.
Mines

w/Diesel

No. En-
gines

Underground
Coal ......... 971 3 173 4 2,950

1 Small .. 426 15 50
Large .... 545 158 2,900

Underground
M/NM ....... 261 5 203 6 4,100

1 Small .. 130 82 625
Large .... 131 121 3,475

Surface Coal 1,673 7 1,673 8 22,000
1 Small .. 1,175 1,175 7,000
Large .... 498 498 15,000

Surface M/
NM ........... 10,474 9 10,474 10 97,000

Notes on Table II–1:
1 A mine with less than 20 miners. MSHA

traditionally regards mines with less than 20
miners as ‘‘small’’ mines, and those with 20 or
more miners as ‘‘large’’ mines based on dif-
ferences in operation. However, in examining
the impact of the proposed regulations on the
mining community, MSHA, consistent with the
Small Business Administration definition for
small mines, which refers to employers with
500 employees or less, has analyzed impact
for this size. This is discussed in the Agency’s
preliminary regulatory economic analysis for
this proposed rule.

2 Preliminary 1996 MSHA data.
3 Data from MSHA approval and certification

center, Oct.95.
4 Actual inventory, rounded to nearest 50.
5 Estimates are based on a January 1998

count, by MSHA inspectors, of underground
mines that use diesel powered equipment.

6 The estimates are based on a January
1998 count, by MSHA inspectors, of diesel
powered equipment normally in use.

7 Based on assumption that all surface coal
mines had some diesel powered equipment.

8 Based on MSHA survey of 25% of surface
coal mines.

9 MSHA assumes all surface M/NM mines
use some diesel engines.

10 Derived by applying ratios (engines per
mine) from MSHA survey of surface coal
mines to M/NM mines.

As noted in Table II–1, nearly all
underground metal and nonmetal
mines, and all surface mines, use diesel-
powered equipment. This is not true in
underground coal mines—in no small
measure because, as discussed later in
this part, several key underground coal
states have for many years banned the

use of diesel-powered equipment in
such mines.

Neither the diesel engines nor the
diesel-powered equipment are identical
from sector to sector. This relates to the
equipment needs in each sector. This is
important information because the type
of engine, and the type of equipment in
which it is installed, can have important
consequences for particulate production
and control.

As the horsepower size of the engine
increases, the mass of dpm emissions
produced per hour increases. (A smaller
engine may produce the same or higher
levels of particulate emissions per
volume of exhaust as a large engine, due
to the airflow, but the mass of
particulate matter increases with the
engine size.) Accordingly, as engine size
increases, control of emissions may
require additional efforts.

Diesel engines in underground metal
and nonmetal mines, and in surface coal
mines, range up to 750 HP or greater; by
contrast, in underground coal mines, the
average engine size is less than 150 HP.
The reason for this disparity is the
nature of the equipment powered by
diesel engines. In underground metal
and nonmetal mines, and surface mines,
diesel engines are widely used in all
types of equipment—both the
equipment used under the heavy
stresses of production and the
equipment used for support. By
contrast, the great majority of the diesel
usage in underground coal mines is in
support equipment. For example, in
underground metal and nonmetal
mines, of the approximate 4,100 pieces
of diesel equipment normally in use,
about 1,800 units are for loading and
hauling. By contrast, of the approximate
3,000 pieces of diesel equipment in
underground coal, MSHA estimates that
less than 50 pieces are for coal haulage.
The largest diesel engines are used in
surface operations; in underground
metal and nonmetal mines, the size of
the engine can be limited by the size of
the shaft opening.

The type of equipment in the sectors
also varies in another way that can
affect particulate control directly, as
well as constrain engine size. In
underground coal, equipment that is
used in face (production) areas of the
coal mine must be MSHA-approved part
36 permissible equipment. These
locations are the areas where methane
gas is likely to accumulate in higher
concentrations. This includes the in-by
section starting at the tailpiece (coal
dump point) and all returns. Part 36
permissible equipment for coal requires
the use of flame arresters on the intake
and exhaust systems and surface
temperature control to below 302°F. As
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discussed in more detail elsewhere in
this notice, the cooler exhaust from
these permissible pieces of equipment
permits the direct installation of
particulate filtration devices such as
paper type filters that cannot be used
directly on engines with hot exhaust. In
addition, the permissibility
requirements have had the effect of
limiting engine size. This is because
prior to MSHA’s issuance of a diesel
equipment rule in 1996, surface
temperature control was done by water
jacketing. This limited the horsepower
range of the permissible engines because
manufacturers have not expended
resources to develop systems that could
meet the 302°F surface temperature
limitation using a water jacketed
turbocharger.

In the future, larger engines may be
used on permissible equipment, because
the new diesel rule allows the use of
new technologies in lieu of water
jacketing. This new technology, plus the
introduction of air-charged aftercoolers
on diesel engines, may lead to the
application of larger size diesel engines
for underground coal production units.
Moreover, if manufacturers choose to
develop this type of technology for
underground coal production units, the
number of diesel production machines
may increase.

There are also a few underground
metal and nonmetal mines that are
gassy, and these require the use of part
36 permissible equipment. Permissible
equipment in metal and nonmetal mines
must be able to control surface
temperatures to 400° F. MSHA estimates
that there are currently less than 15
metal and nonmetal mines classified as
gassy and which, therefore, must use
part 36 permissible equipment if diesels
are utilized in areas where permissible
equipment is required. These gassy
metal and nonmetal mines have been
using the same permissible engines and
power packages as those approved for
underground coal mines. (MSHA has
not certified a diesel engine exclusively
for a part 36 permissible machine for the
metal and nonmetal sector since 1985
and has certified only one permissible
power package; however, that engine
model has been retired and is no longer
available as a new purchase to the
industry). As a result, these mines are in
a similar situation as underground coal
mines: engine size (and thus dpm
production of each engine) is more
limited, and the exhaust is cool enough
to add the paper type of filtration device
directly to the equipment.

In nongassy underground metal and
nonmetal mines, and in all surface
mines, mine operators can use
conventional construction equipment in

their production sections without the
need for modifications to the machines.
Two examples are haulage vehicles and
dump trucks. Some construction
vehicles may be redesigned and
articulated for sharper turns in
underground mines; however, the
engines are still the industrial type
construction engines. As a result, these
mines can and do use engines with
larger horsepower. At the same time,
since the exhaust is not cooled, paper-
type filters cannot be added directly to
this equipment without first adding a
water scrubber, heat exchanger or other
cooling device. The same is true for the
equipment used in outby areas of coal
mines, where the methane levels do not
require the use of permissible
equipment.

Future Demand and Emissions
MSHA expects there will be more

diesel-powered equipment added to the
Nation’s mines. While other types of
power sources for mining equipment are
available, many in the mining industry
believe that diesel power provides both
safety and economic advantages over
alternative power sources available
today. Not many studies have been done
recently on these contentions, and the
studies which have been reviewed by
MSHA do not clearly support this
hypothesis; but as long as this view
remains prevalent, continued growth is
likely.

There are additional factors that could
increase growth. As noted above,
permissible equipment can now be
designed in such a way to permit the
use of larger engines, and in turn more
use of diesel-powered production
equipment in underground coal and
other gassy mines. Moreover, state laws
banning the use of diesel engines in the
underground coal sector are under
attack. As noted in section 8 of this part,
until recently, three major underground
coal states, Pennsylvania, West Virginia,
and Ohio, have prohibited the use of
diesel engines in underground coal
mines. In late 1996, Pennsylvania
passed legislation (PA Senate Bill No.
1643) permitting such use under
conditions defined in the statute. West
Virginia passed legislation lifting its ban
as of May, 1997 (WV House Bill 2890),
subject to regulations to be developed
by a joint labor-industry commission.
This makes the need to address safety
and health concerns about the use of
such engines very pressing.

In the long term, the mining
industry’s diesel fleet will become
cleaner, even if the size of the fleet
expands. This is because the old engines
will eventually be replaced by new
engines that will emit fewer particulates

than they do at present. As discussed in
section 4 of this part, EPA regulations
limiting the emissions of particulates
and various gasses from new diesel
engines are already being implemented
for some of the smaller engines used in
mining. Under a defined schedule, these
new standards will soon apply to other
new engines, including the larger
engines used in mining. Moreover, over
time, the emission standards which new
engines will have to pass will become
more and more stringent. Under
international accords, imported engines
are also likely to be cleaner: European
countries have already established more
stringent emission requirements
(Needham, 1993; Sauerteig, 1995).

But MSHA believes that turnover of
the mining fleet to these new, cleaner
engines will take a very long time
because the mining industry tends to
purchase for mining use older
equipment that is being discarded by
other industries. In the meantime, the
particulate burden on miners as a group
is expected to remain at current levels
or even grow.

(2) Diesel Exhaust and Diesel
Particulate. The emissions from diesel
engines are actually a complex mixture
of compounds, containing gaseous and
particulate fractions. The specific
composition of the diesel exhaust in a
mine will vary with the type of engines
being used and how they are used.
Factors such as type of fuel, load cycle,
engine maintenance, tuning, and
exhaust treatment will affect the
composition of both the gaseous and
particulate fractions of the exhaust. This
complexity is compounded by the
multitude of environmental settings in
which diesel-powered equipment is
operated. Elevation, for example, is a
factor. Nevertheless, there are a few
basic facts about diesel emissions that
are of general applicability.

The gaseous constituents of diesel
exhaust include oxides of carbon,
nitrogen and sulfur, alkanes and alkenes
(e.g., butadiene), aldehydes (e.g.,
formaldehyde), monocyclic aromatics
(e.g., benzene, toluene), and polycyclic
aromatic hydrocarbons (e.g.,
phenanthrene, fluoranthene). The
oxides of nitrogen (NOX) are worth
particular mention because in the
atmosphere they can precipitate into
particulate matter. Thus, controlling the
emissions of NOX is one way that engine
manufacturers can control particulate
production indirectly. (See section 4 of
this part).

The particulate fraction of diesel
exhaust—what is known as soot—is
made up of very small individual
particles. Each particle consists of an
insoluble, elemental carbon core and an
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adsorbed, surface coating of relatively
soluble organic carbon (hydrocarbon)
compounds. There can be up to 1,800
different organic compounds adsorbed
onto the elemental carbon core. A
portion of this hydrocarbon material is
the result of incomplete combustion of
fuel; however, the majority is derived
from the engine lube oil. In addition, the
diesel particles contain a fraction of
non-organic adsorbed materials.

Diesel particles released to the
atmosphere can be in the form of
individual particles or chain aggregates
(Vuk, Jones, and Johnson, 1976). In
underground coal mines, more than

90% of these particles and chain
aggregates are submicrometer in size—
i.e., less than 1 micrometer (1 micron)
in diameter. In underground metal and
nonmetal mines, a greater portion of the
aggregates may be larger than 1 micron
in size because of the equipment used.
Dust generated by mining and crushing
of material—e.g., silica dust, coal dust,
rock dust—is generally not
submicrometer in size.

Figure II–1 shows a typical size
distribution of the particles found in the
environment of a mine that uses
equipment powered by diesel engines
(Cantrell and Rubow, 1992). The vertical

axis represents relative concentration,
and the horizontal axis the particle
diameter. As can be seen, the
distribution is bimodal, with dpm
generally being well less than 1 m in
size and dust generated by the mining
process being well greater than 1 m.
Because of their small size, even when
diesel particles are present in large
quantities, the environment might not
be perceived as ‘‘dusty’’. Rather, the
perception might be primarily of a
vaporous, dirty and smelly ‘‘soot’’ or
‘‘smoke’’.

The particulate nature of diesel soot
has special significance for the mining
community, which has a history of
significant health and safety problems
associated with dusts in the mining
atmosphere. As a result of this long
experience, the mining community is
familiar with the standard techniques to
control particulate concentrations. It
knows how to use ventilation systems,
for example, to reduce dust levels in
underground mines. It knows how to
water down particulates capable of
being impacted by that approach, and to
divert particulates away from where
miners are actively working. Moreover,
the mining community has long
experience in the sampling and

measurement of particulates—and in all
the problems associated therewith.
Miners and mine operators are very
familiar with sampling devices that are
worn by miners during normal work
activities or placed in specific locations
to collect dust. They understand the
significance of sample integrity, the
validity of laboratory analysis, and the
concept of statistical error in individual
samples. They know that weather and
mine conditions can affect particulate
production, as can changes in mine
operations in an area of the mine.
MSHA and the former Bureau of Mines
have conducted considerable research
into these topics. While the mining
community has often argued over these

points, and continues to do so, the
sophistication of the arguments reflects
the thorough familiarity of the mining
community with particulate sampling
and analysis techniques.

(3) Methods Available to Measure
DPM. There are a number of methods
which can measure dpm concentrations
with reasonable accuracy when it is at
high concentrations and when the
purpose is exposure assessment.
Measurements for the purpose of
compliance determinations must be
more accurate, especially if they are to
measure compliance with a dpm
concentration as low as 200 µg/m3 or
lower. It is with these considerations in
mind that MSHA has carefully analyzed
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the available methods for measuring
dpm.

Comments. In its advanced notice of
proposed rulemaking (ANPRM) in 1992,
MSHA sought information on whether
there are methodologies available for
assessing occupational exposures to
diesel particulate.

Some commenters argued that at that
time there was no validated sampling
method for diesel exhaust and there had
been no valid analytical method
developed to determine the
concentration of diesel exhaust.
According to the American Mining
Congress, (AMC 1992), sampling
methods commonly in use were
prototypic in nature, were primarily
being utilized by government agencies
and were subject to interference.
Commenters also stated that sampling
instrumentation was not commercially
available and that the analytical
procedures could only be conducted in
a limited number of laboratories.
Several industry commenters submitted
results of studies to support their
position on problems with measuring
diesel particulate in underground
mines. A problem with sampler

performance was noted in a study using
prototype dichotomous sampling
devices. Another commenter indicated
that the prototype sampler developed by
the former Bureau of Mines (discussed
later in this section) for collecting the
submicrometer respirable dust was
difficult to assemble but easy to use, and
that no problems were encountered.
Problems associated with gravimetric
analysis were also noted in assessing a
short term exposure limit (STEL).
Another commenter (Morton, 1992)
indicated the cost of the sampling was
prohibitive.

Another issue addressed by
commenters to the 1992 ANPRM was
‘‘Are existing sampling and exposure
monitoring methods sufficiently
sensitive, accurate and reliable?’’ If not,
what methods would be more suitable?
Some commenters indicated their views
that sampling methods had not been
validated at that time for compliance
sampling. They asserted that, depending
on the level of measurement, both the
size selective and elemental carbon
techniques have some utility. The
measurement devices give a precise
measurement; however, because of

interferants, corrections may need to be
made to obtain an accurate
measurement. Commenters also
expressed the view that all of the
sampling devices are sophisticated and
require some expertise to assemble and
analyze the results, and that MSHA
should rely on outside agencies to
evaluate and validate the sampling
methods. An on-board sampler being
developed by Michigan Technological
University was the only other emission
measurement technology discussed in
the comments. However, this device is
still in the development stage. Another
commenter indicated that the standard
should be based on the hazard and that
the standard would force the
development of measurement
technology.

Submicrometer Sampling

The former Bureau of Mines (BOM)
submitted information on the
development of a prototype
dichotomous impactor sampling device
that separates and collects the
submicrometer respirable particulate
from the respirable dust sampled (See
Figure II–2).

The sampling device was designed to
help measure dpm in coal mine
environments, where, as noted in the
last section of this part, nearly all the
dpm is submicrometer (less than 1
micron) in size. In its submission to
MSHA, the former BOM noted it had
redesigned a prototype and had verified

the sampler’s performance through
laboratory and field tests.

As used by the former BOM in its
research, the submicrometer respirable
particulate was collected on a pre-
weighed filter. Post-weighing of the
filter provides a measure of the
submicrometer respirable particulate.
The relative insensitivity of the

gravimetric method only allows for a
lower limit of detection of
approximately 200 µg/m3. Because
submicrometer respirable particulate
can contain particulate material other
than diesel particulate, measurements
can be subject to interference from other
submicrometer particulate material.
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NIOSH Method 5040

In response to the ANPRM, NIOSH
submitted information relative to the
development of a sampling and
analytical method to assess the diesel
particulate concentration in an
environment by measuring the amount
of total carbon.

As discussed earlier in this part,
diesel particulate consists of a core of
elemental carbon (EC), adsorbed organic
carbon (OC) compounds, sulfates, vapor
phase hydrocarbons and traces of other

compounds. The method developed by
NIOSH provides for the collection of a
sample on a quartz fiber filter. The filter
is mounted in an open face filter holder
that allows for the sample to be
uniformly deposited on the filter
surface. After sampling, a section of the
filter is analyzed using a thermal-optical
technique (Birch and Cary, 1996). This
technique allows the EC and OC species
to be separately identified and
quantified. Adding the EC and OC
species together provides a measure of
the total carbon concentration in the

environment. This is indicated
diagrammatically in Figure II–3.

Studies have shown that the sum of
the carbon (C) components (EC + OC)
associated with dpm accounts for 80–
85% of the total dpm concentration
when low sulfur fuel is used (Birch and
Cary, 1996). Since the TC:DPM
relationship is consistent, it provides a
method for determining the amount of
dpm.

The method can detect as little as 1
µg/m3 of TC.

Moreover, NIOSH has investigated the
method and found it to meet NIOSH’s
accuracy criterion (NIOSH, 1995); i.e.,
that measurements come within 25
percent of the true TC concentration at
least 95 percent of the time.

NIOSH Method 5040 is directly
applicable for the determination of
diesel particulate levels in underground
metal and nonmetal mines. The only
potential sources of carbon in such
mines would be organic carbon from oil
mist and cigarette smoke. Oil mist may
occur when diesel equipment
malfunctions or is in need of
maintenance. MSHA, currently, has no
data as to the frequency of occurrence
or the magnitude of the potential
interference from oil mist. However,
during studies conducted by MSHA to
evaluate different methods used to
measure diesel particulate
concentrations in underground mines,
MSHA has not encountered situations
where oil mist was found to be an
interferant. Moreover, the Agency
assumes that full operator
implementation of maintenance

standards to minimize dpm emissions
(which are part of MSHA’s proposed
rule) will minimize any remaining
potential for such interference. MSHA
welcomes comments or data relative to
oil mist interference. Cigarette smoke is
under the control of operators, during
sampling times in particular, and hence
should not be a consideration.

While samples in underground metal
and nonmetal mines could be taken
with a submicrometer impactor, this
could lead to underestimating the total
amount of dpm present. This is because
the fraction of dpm particles greater
than 1 micron in size in the
environment of noncoal mines can be as
great as 20% (Vuk, Jones, and Johnson,
1976).

When sampling diesel particulate in
coal mines, the NIOSH method
recommends that a specialized impactor
with a submicrometer cut point, such as
the one developed by the former BOM,
be used. Use of the submicron impactor
minimizes the collection of coal
particles, which have an organic carbon
content. However, if 10% of coal

particles are submicron, this means that
up to 200 micrograms of submicrometer
coal dust could be collected in face
areas under current coal dust standards.
Accordingly, for samples collected in
underground coal mines, an adjustment
may have to be made for interference
from submicrometer coal dust; however,
outby areas where little coal mine dust
is present may not need such an
adjustment.

NIOSH further recommends that in
using its method in coal mines, the
sample only be analyzed for the EC
component. Measuring only the EC
component ensures that only diesel
particulate material is being measured
in such cases. However, there are no
established relationships between the
concentration of EC and total dpm
under various operating conditions.
(The organic carbon component of dpm
can vary with engine type and duty
cycle; hence, the amount of whole dpm
present for a measured amount of EC
may vary). The Agency welcomes data
and suggestions that would help it
ascertain if and how measurements of
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submicrometer elemental carbon could
realistically be used to measure dpm
concentrations in underground coal
mines.

Although NIOSH Method 5040
requires no specialized equipment for
collecting a dpm sample, the sample
would most probably require analysis
by a commercial laboratory. MSHA
recognizes that the number of
laboratories currently capable of
analyzing samples using the thermal-
optical method is limited. However,
there are numerous laboratories
available that have the ability to perform
a TC analysis without identifying the
different species of carbon in the
sample. Total carbon determinations
using these laboratories would provide
the mine with good information relative
to the levels of dpm to which miners are
potentially exposed. MSHA believes
that once there is a need (e.g., as a result
of the requirements of the proposed
rule), more commercial laboratories will
develop the capability to analyze dpm
samples using the thermo-optical
analytical method. Currently, the cost to
analyze a submicrometer particulate
sample for its TC content ranges from
$30 to $50. This cost is consistent with
costs associated with similar analysis of
minerals such as quartz.

RCD Method
Another method, referred to as the

Respirable Combustible Dust Method
(RCD), has been developed in Canada
for measuring dpm concentrations in
noncoal mines. Respirable dust is
collected with a respirable dust sampler
consisting of a 10 millimeter nylon
cyclone and a filter capsule containing
a preweighed, preconditioned silver
membrane filter. Samples are collected
at a flow rate of 1.7 liter per minute. The
respirable sample collected includes
both combustible and noncombustible
particulate matter.

Samples collected in accordance with
the RCD method require analysis by a
commercial laboratory. Total respirable
dust is determined gravimetrically by
weighing the filter after the sample is
collected. After the sample has been
subjected to a controlled combustion
process at 400°C for two hours, the
remainder of the sample is weighed, and
the amount of the particulate burned off
determined by subtraction. This is the
RCD. The combustible particulate
matter consists of the soluble organic
fraction, the EC core of the dpm, and
any other combustible material
collected. Thus, only a portion of the
RCD is attributable to dpm. Oil mist and
other combustible matter collected on
the filter are interferants that can affect
the accuracy of dpm concentration

determination using this method.
Because the mass of RCD is determined
by weighing, the relative insensitivity of
this method is similar to that obtained
with the size selective gravimetric
method (approximately 200 µg/m3).

One commenter (Inco Limited)
indicated experience with this method
for identifying diesel particulate in their
mining operations and suggested that
this technique may be appropriate for
determining eight hour exposures.
Although this method was commonly
used by the commenter for assessing
dpm levels, concerns for the efficiency
of the cyclones used to sample the
respirable fraction of the particulate
along with interference from oil mist
were expressed.

Canada is now experimenting with
the use of a submicron impactor with
the RCD method.

Sampler Availability
The components for conducting

sampling according to the
submicrometer and the RCD methods
are commercially available, as are those
for NIOSH Method 5040, without a
submicrometer particulate separator
(impactor).

A reusable impactor can be
manufactured by machine shops
following the design specifications
developed by the former U.S. Bureau of
Mines (BOM IC 9324, 1992). The use of
the size-selective samplers requires
some training and laboratory time to
prepare the impaction plate and
assemble the unit. The cost to
manufacture the size-selective units is
approximately $35.

In addition, MSHA has requested
NIOSH to develop and provide a
commercially available disposable
submicrometer particulate separator that
would be used with existing personal
respirable dust sampling equipment.
The commercially available separator
will be manufactured according to
design criteria specified by NIOSH. It is
anticipated that other sampling
instrument manufacturers will develop
commercial units once there is an
established need for such a sampling
device.

Use of Alternative Surrogates to Assess
DPM Concentrations

A number of commenters on the
ANPRM indicated that a number of
surrogates were available to monitor
diesel particulate. Of the surrogates
suggested, the most desirable to use
would be carbon dioxide because of its
ease of measurement. In 1992 the former
Bureau of Mines (BOM IC 9324, 1992)
reported on research being conducted to
investigate the use of CO2 as a surrogate

to assess mine air quality where diesel
equipment is utilized. However, because
the relationship between CO2 and other
exhaust components depends on the
number, type and duty cycle of the
engines in operation, no acceptable
measurement method based on the use
of CO2 has been developed.

(4) Reducing Soot at the Source—
Engine Standards. One way to limit
diesel particulate emissions is to
redesign diesel engines so they produce
fewer pollutants. Engine manufacturers
around the world are being pressed to
do this pursuant to environmental
regulations. These cleaner engine
requirements are sometimes referred to
as tailpipe standards because
compliance is measured by checking for
pollutants as the exhaust emerges from
the engine’s tailpipe—before any
aftertreatment devices. This section
reviews developments in this area, and
explains the relationship between the
environmental standards on new
engines and MSHA engine ‘‘approval’’
requirements.

The Clean Air Act and Mobile Sources
The Clean Air Act authorized the

Federal Environmental Protection
Agency (EPA) to establish nationwide
standards for new mobile vehicles,
including those powered by diesel
engines. These standards are designed,
over time, to reduce the volume of
certain harmful atmospheric pollutants
emanating from mobile sources:
particulate matter, nitrogen oxides
(which as previously noted, can result
in the generation of particulates in the
atmosphere), hydrocarbons and carbon
monoxide.

California has its own standards. New
engines destined for use in California
must meet standards under the law of
that State. The standards are issued and
administered by the California Air
Resources Board (CARB). In recent
years, EPA and CARB have worked
together with industry in establishing
their respective standards, so most of
them are identical.

Regulatory responsibility for
implementation of the Clean Air Act is
vested in the Office of Mobile Sources
(OMS), part of the Office of Air and
Radiation of the EPA. Some of the
discussion which follows was derived
from materials which can be accessed
from the OMS home page on the World
Wide Web at (http://www.epa.gov/docs/
omswww/omshome.htm). Information
about the CARB standards may be found
at the home page of that agency at
(http://www.arbis.arb.ca.gov/
homepage.htm).

Engines are generally divided into
three broad categories for purposes of



17508 Federal Register / Vol. 63, No. 68 / Thursday, April 9, 1998 / Proposed Rules

environmental emissions standards, in
accordance with the primary use for
which the type of engine is designed: (1)
cars and light duty trucks (i.e., to power
passenger transport); (2) heavy duty
trucks (i.e., to power over-the-road
hauling); and (3) nonroad vehicles (i.e.,
to power small equipment, construction
equipment, locomotives and other non-
highway uses). Engines used in mining
equipment are not regulated as a
separate category in this regard, but
engines in all three categories are
engaged in mining work, from generator
sets to pickup trucks to huge earth
movers and haulers.

New vs. Used
The environmental tailpipe

requirements are applicable only to new
engines. In the mining industry, used
engines are often purchased; and, of
course, the existing fleet consists of
engines that are not new. Thus,
although these tailpipe requirements
will bring about gradual reduction in
the overall contribution of diesel
pollution to the atmosphere, the
beneficial effects on mining
atmospheres may require a longer
timeframe, absent actions to accelerate
the turnover of mining fleets to the
cleaner engines.

In underground coal mining, MSHA
has already taken actions which will
have such an effect on the fleet. The
diesel equipment rule issued in late
1996 requires that by November 25,
1999, all diesel equipment used in
underground coal mines use an
approved engine and maintain that
engine in approved condition. (30 CFR
75.1907.) MSHA expects this will result
in the replacement of about 47 percent
of the diesel engines now in the
underground coal mine inventory with
engines that emit fewer pollutants. The
timeframe permitted for the turnover
was based upon MSHA’s estimates of
the useful life in an underground
mining environment of the ‘‘outby’’
equipment involved.

Technology-Forcing Schedule
As noted above, the exact

environmental tailpipe requirements
which a new diesel engine must meet
varies with the date of manufacture. The
Clean Air Act, which was most recently
amended in 1990, establishes a schedule
for the reduction of particular pollutants
from mobile sources. EPA and CARB,
working closely with the diesel engine
industry, have endeavored to turn this
into a regulatory schedule that forces
technology while taking into account
certain technological realities (e.g.,
actions taken to reduce particulate
emissions may increase NOx emissions,

and vice versa). Existing EPA
regulations for on-highway engines
(both for light duty vehicles and heavy
duty trucks) and non-road engines
schedule the tailpipe standards that
must be met for the rest of this century.
Agreements between EPA, CARB and
the engine industry are now leading to
proposed rules for engine standards to
be met during the early part of the next
century. These standards will be stricter
and will lower the levels of diesel
emissions.

Light-Duty Engines
The current regulations on light duty

vehicle engines (cars and passenger
trucks) were set in 1991. (56 FR 25724).
EPA is currently considering proposing
new standards for this category.
Pursuant to a specific requirement in
the Clean Air Act Amendments of 1990,
EPA is to study and report to Congress
on whether further reductions in this
category should be pursued. A public
workshop was held in the Spring of
1997. EPA plans provide for a draft
report to be available for public
comment by Spring of 1998, and a final
report completed by July 1998, although
a notice of citizen suit has been filed to
speed the process. Up-to-date
information about the progress of this
initiative can be found at the home page
for the study (http://www.epa.gov/
omswww/tr2home.htm).

On-Highway Heavy Duty Truck Engines
The first phase of the on-highway

standards for heavy duty diesel engines
was applicable to engines manufactured
in 1985. (40 CFR 86.085–11.) For the
first time, separate standards for NOX

and hydrocarbons were established. The
nitrogen oxides and hydrocarbons are
precursors of ground level ozone, a
major component of smog. A number of
hydrocarbons are also toxic, while
nitrogen oxides contribute to the
formation of acid rain and can, as
previously noted, precipitate into
particulate matter. In 1988, a specific
standard limiting particulate matter
emitted from the heavy duty on-
highway diesel engines went into effect.
(40 CFR 86.088–11). The Clean Air Act
Amendments and the regulations
provided for phasing in even tighter
controls on NOX and particulate matter
through 1998. Reductions in NOX took
place in 1990 and 1991 and are to occur
again in 1998, and reductions in PM
took place in 1991 and 1994. Certain
types of trucks in particularly polluted
urban areas must reach even tighter
requirements.

On October 21, 1997, EPA issued a
new rule for on-highway engines that
will take effect for engine model years

starting in 2004. (62 FR 54693.) The rule
establishes a combined requirement for
NOX and HC. The combined standard is
set at 2.5gm/bhp-hr, which includes a
cap of 0.5gm/bhp-hr for HC. Prior to the
rule, the EPA, CARB, and the engine
manufacturers signed a Statement of
Principles (SOP) that agreed on
harmonization of the emission
standards and the feasible levels that
could be achieved. The rule allows
manufacturers a choice of two
combinations of NOX and HC, with a net
expected reduction in NOX emissions of
50%. The rule does not require further
reductions in tailpipe emissions of PM.

Non-road Engines
Of particular interest to the mining

community is the EPA’s regulatory work
on the standards that will be applicable
to non-road engines, for these include
the engines used in the heaviest mining
equipment.

The 1990 Clean Air Act Amendments
specifically directed EPA to study the
contribution of nonroad engines to air
pollution, and regulate them if
warranted. In 1991, EPA released a
study that documented higher than
expected emission levels across a broad
spectrum of nonroad engines and
equipment (EPA Fact Sheet, EPA420–F–
96–009, 1996). In response, EPA
initiated several regulatory programs.
One of these set emission standards for
land-based nonroad engines greater than
50 horsepower (other than for rail use).
Limits are established for tailpipe
emissions of hydrocarbons, carbon
monoxide, NOX, and dpm. The limits
are phased in from 1996 to 2000:
starting in 1996 with nonroad engines
from 175 to 750 hp, then smaller
engines, and by 2000 the larger nonroad
engines. Moreover, in February 1997,
restrictions on nonroad engines for
locomotives were proposed. (62 FR
6366.)

In September 1996, EPA announced
another Statement of Principles (SOP)
with the engine industry and CARB on
new rounds of restrictions for non-road
engines to begin to take place in this
century. This led in September 1997 to
a proposed rule setting standards for
almost all types of engines in this
category manufactured after 1999–2006
(the actual year depends on the
category). (62 FR 50151.) The applicable
standards for an engine category would
be gradually tightened through three
tiers. They would set a cap on the
combined NOX and HC (similar to the
on-highway), set CO standards, and
lower standards on PM. The
implementation of the final tier of the
proposed reductions is subject to a
technology review in 2001 to ensure
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that the appropriateness of the levels to
be set is feasible.

Will the Diesel Engine Industry Meet
Mining Industry Requirements?

Concern has been expressed from
time to time that the diesel industry
might not be able to meet the ever
tightening standards on tailpipe
emissions, and might, therefore, stop
producing certain engines needed by the
mining community or other industries
(Gushee, 1995). To date, however, such
concerns have not been realized. The
fact that the most recent regulations
have been developed through a
consensus process with the engine
industry, and that the non-road plan
includes a scheduled technology review
to ensure the proposed emission
standards can really be achieved,
suggests that although the EPA
standards are technology forcing, diesel
engines will continue to be available to
meet the needs of the mining
community for the foreseeable future. In
addition, the nonroad engine agreement
with the industry calls for development
of a separate research agreement
involving stakeholders in the
exploration of technologies that can
achieve very low emission levels of NOX

and PM ‘‘while preserving performance,
reliability, durability, safety, efficiency,
and compatibility with nonroad
equipment’’ (EPA420–F–96–015,
September 1996). Also, Vice President
Gore has recently noted that the
Administration is committed to
emissions research that would clean up
both the diesels currently on the road,
as well as enabling these engines an
opportunity to compete as a new
generation of vehicles is developed that
are far more efficient than today’s
vehicles (White House Press Release,
July 23, 1997). It is always possible, of
course, that some new technological
problems could emerge that could
impact diesel engine availability—e.g.,
confirmation that some of the newer
engines produce high levels of
‘‘nanoparticles’’ particulates and that
such emissions pose some sort of a
health problem. Research of
nanoparticles and their health effects is
currently a topic of investigation (Bagley
et al., 1996).

A related question has been whether
the costs of the ‘‘high-tech’’ diesel
engines will make them unaffordable in
practice to the mining community.
MSHA believes the new engines will be
affordable. The fact that the engine
industry has agreed to the new
standards, and has some assurance of
what the applicable standards will be
for the foreseeable future, should help
keep costs in check.

In theory, underground mines can
control costs by purchasing certain
types of new engines that do not have
to meet the new EPA standards. The
rules on heavy duty on-highway truck
engines were not applied to engines
intended to be used in underground
coal mines (59 FR 31336), and the new
proposed rules on nonroad vehicles
would likewise not be mandatory for
engines intended for any underground
mining use. In practice, however, it is
not likely that engine manufacturers
will produce special engines once they
switch over their production lines to
meet the new EPA standards, because
there are few types and sizes of engines
in production for which the mining
community is the major market.
Moreover, the larger engines (above 750
hp) are specifically covered by the EPA
nonroad rules (Engine Manufacturers
Assn. vs. EPA, 88 F.3d 1075, 319 U.S.
App.D.C. 12 (1996)).

MSHA Approved Engines
Acting under its own authority to

protect miner safety and health, MSHA
requires that diesel engines used in
certain types of mining operations be
‘‘approved’’ as meeting certain tailpipe
standards.

In some ways, the standards are akin
to those of EPA and CARB. For example,
MSHA, CARB and EPA generally use
the same tests to check emissions.
MSHA uses a steady state, 8-mode test
cycle, the same as EPA and CARB use
to test engines designed for use in off-
road equipment; however, EPA uses a
different, transient test for on-highway
engines.

But to be approved by MSHA, an
engine does not have to be as clean as
the newer diesel engines, every
generation of which must meet ever
tighter EPA and CARB tailpipe
standards. Approval of an engine by
MSHA merely ensures that the tailpipe
emissions from that engine meet certain
basic standards of cleanliness—cleaner
than the engines which many mines
continue to use.

The MSHA approval rules were
revised in 1996 (as part of the 1996 rule
on the use of diesel equipment in
underground coal mines) to provide the
mining community with additional
information about the cleanliness of the
emissions emerging from the tailpipe of
various engines. Specifically, the agency
now requires that a particulate index
(PI) be reported as part of MSHA’s
engine approval. This index permits
operators to evaluate the contribution of
a proposed new addition to the fleet to
the mine’s particulate concentrations.

There is no requirement that
approved engines meet a particular PI;

rather, the requirement is for
information purposes only. In its 1996
rulemaking, MSHA explicitly deferred
until this rulemaking the question of
whether to require engines used in
mining environments to meet a
particular PI. (61 FR 55420–21, 55437).
The Agency has decided not to take that
approach, for the reasons discussed in
part V of this preamble.

(5) Limiting the Public’s Exposure to
Soot—Ambient Air Quality Standards.
Pursuant to the Clean Air Act, EPA is
responsible for setting air pollution
standards to protect the public from
toxic air contaminants. These include
standards to limit exposure to
particulate matter. The pressures to
comply with these limits have an
impact upon the mining industry,
which contributes various types of
particulate matter into the environment
during mining operations, and a special
impact on the coal mining industry
whose product is used extensively in
emission-generating power facilities.
But those standards hold interest for the
mining community in other ways as
well, for underlying some of them is a
large body of evidence on the harmful
effects of airborne particulate matter on
human health. Increasingly, that
evidence has pointed toward the risks of
the smallest particulates—including the
particles generated by diesel engines.

This section provides an overview of
EPA rulemaking on particulate matter.
For more detailed information,
commenters are referred to ‘‘The Plain
English Guide to the Clean Air Act,’’
EPA 400–K–93–001, 1993, to the
‘‘Review of the National Ambient Air
Quality Standards for Particulate Matter:
Policy Assessment of Scientific and
Technical Information’’, EPA–452/R–
96–013, 1996; and, on the latest rule, to
EPA Fact Sheets, July 17, 1997. These
and other documents are available from
EPA’s Web site.

Background
Air quality standards involve a two-

step process: standard setting by EPA,
and implementation by each State.

Under the law, EPA is specifically
responsible for reviewing the scientific
literature concerning air pollutants, and
establishing and revising National
Ambient Air Quality Standards
(NAAQS) to minimize the risks to
health and the environment associated
with such pollutants. It is supposed to
do a review every five years. Feasibility
of compliance by pollution sources is
not supposed to be a factor in
establishing NAAQS. Rather, EPA is
required to set the level that provides
‘‘an adequate margin of safety’’ in
protecting the health of the public.
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Implementation of each national
standard is the responsibility of the
states. Each must develop a state
implementation plan that ensures air
quality in the state consistent with the
ambient air quality standard. Thus, each
state has a great deal of flexibility in
targeting particular modes of emission
(e.g., mobile or stationary, specific
industry or all, public sources of
emissions vs. private-sector sources),
and in what requirements to impose on
polluters. However, EPA must approve
the state plans pursuant to criteria it
establishes, and then take pollution
measurements to determine whether all
counties within the state are meeting
each ambient air quality standard. An
area not meeting an NAAQS is known
as a ‘‘nonattainment area’’.

TSP
Particulate matter originates from all

types of stationary, mobile and natural
sources, and can also be created from
the transformation of a variety of
gaseous emissions from such sources. In
the context of a global atmosphere, all
these particles are mixed together, and
both people and the environment are
exposed to a ‘‘particulate soup’’ the
chemical and physical properties of
which vary greatly with time, region,
meteorology, and source category.

The first ambient air quality standards
dealing with particulate matter did not
distinguish among these particles.
Rather, the EPA established a single
NAAQS for ‘‘total suspended
particulates’’, known as ‘‘TSP.’’ Under
this approach, the states could come
into compliance with the ambient air
requirement by controlling any type or
size of TSP. As long as the total TSP was
under the NAAQS which was
established based on the science
available in the 1970s—the state met the
requirement.

PM10

When the EPA completed a new
review of the scientific evidence in the
mid-eighties, its conclusions led it to
revise the particulate NAAQS to focus
more narrowly on those particulates less
than 10 microns in diameter, or PM10.
The standard issued in 1987 contained
two components: an annual average
limit of 150 µg/m3, and a 24-hour limit
of 50 µg/m3. This new standard required
the states to reevaluate their situations
and, if they had areas that exceeded the
new PM10 limit, to refocus their
compliance plans on reducing those
particulates smaller than 10 microns in
size. Sources of PM10 include power
plants, iron and steel production,
chemical and wood products
manufacturing, wind-blown and

roadway fugitive dust, secondary
aerosols and many natural sources.

Some state implementation plans
required surface mines to take actions to
help the state meet the PM10 standard.
In particular, some surface mines in
Western states were required to control
the coarser particles—e.g., by spraying
water on roadways to limit dust. The
mining industry has objected to such
controls, arguing that the coarser
particles do not adversely impact
health, and has sought to have them
excluded from the EPA ambient air
standards (Shea, 1995; comments of
Newmont Gold Company, March 11,
1997, EPA docket number A–95–54, IV–
D–2346).

PM2.5

The next scientific review was
completed in 1996, following suit by the
American Lung Association and others.
A proposed rule was published in
November of 1996, and, after public
hearings and review by the Office of the
President, a final rule was promulgated
on July 18, 1997. (62 FR 38651).

The new rule further modifies the
standard for particulate matter. Under
the new rule, the existing national
ambient air quality standard for PM10

remains basically the same—an annual
average limit of 150 µg/m3 (with some
adjustment as to how this is measured
for compliance purposes), and a 24-hour
ceiling of 50 µg/m3. In addition,
however, a new NAAQS has now been
established for ‘‘fine particulate matter’’
that is less than 2.5 microns in size. The
PM2.5 annual limit is set at 15 µg/m3,
with a 24-hour ceiling of 65 µg/m3.

The basis for the PM2.5 NAAQS is a
new body of scientific data suggesting
that particles in this size range are the
ones responsible for the most serious
health effects associated with
particulate matter. The evidence was
thoroughly reviewed by a number of
scientific panels through an extended
process. (A chart of the scientific review
process is available on EPA’s web site
— http://ttnwww.rtpnc.epa.gov/
naaqspro/pmnaaqs.gif). The proposed
rule resulted in considerable press
attention, and hearings by Congress, in
which this scientific evidence was
further discussed. Following a careful
review, President Clinton announced
his concurrence with the rulemaking in
light of the scientific evidence of risk.
However, the implementation schedule
for the rule is long enough so that the
next review of the science is scheduled
to be completed before the states are
required to meet the new NAAQS for
PM2.5—hence, adjustment of the
standard is still possible before
implementation.

Implications for the Mining Community

As noted earlier in this part, diesel
particulate matter is mostly less than 1.0
micron in size. It is, therefore, a fine
particulate. The body of evidence of
human health risk from environmental
exposure to fine particulates must,
therefore, be considered in assessing the
risk of harm to miners of occupational
exposure to one type of fine
particulate—diesel particulate. MSHA
has accordingly done so in its risk
assessment (see part III of this
preamble).

(6) Controlling Diesel Particulate
Emissions in Mining—a Toolbox. Efforts
to control diesel particulate emissions
have been under review for some time
within the mining community, and
accordingly, there is considerable
practical information available about
controls—both in general terms, and
with respect to specific mining
situations.

Workshops

In 1995, MSHA sponsored three
workshops ‘‘to bring together in a forum
format the U.S. organizations who have
a stake in limiting the exposure of
miners to diesel particulate (including)
mine operators, labor unions, trade
organizations, engine manufacturers,
fuel producers, exhaust aftertreatment
manufacturers, and academia.’’
(McAteer, 1995). The sessions provided
an overview of the literature and of
diesel particulate exposures in the
mining industry, state-of-the-art
technologies available for reducing
diesel particulate levels, presentations
on engineering technologies toward that
end, and identification of possible
strategies whereby miners’ exposure to
diesel particulate matter can be limited
both practically and effectively. One
workshop was held in Beckley, West
Virginia on September 12 and 13, and
the other two were held on October 6,
and October 12 and 13, 1995, in Mt
Vernon, Illinois and Salt Lake City,
Utah, respectively. A transcript was
made. During a speech early the next
year, the Deputy Assistant Secretary for
MSHA characterized what took place at
these workshops:

The biggest debate at the workshops was
whether or not diesel exhaust causes lung
cancer and whether MSHA should move to
regulate exposures. Despite this debate, what
emerged at the workshops was a general
recognition and agreement that a health
problem seems to exist with the current high
levels of diesel exhaust exposure in the
mines. One could observe that while all the
debate about the studies and the level of risk
was going on, something else interesting was
happening at the workshops: One by one
miners, mining companies, and
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manufacturers began describing efforts
already underway to reduce exposures. Many
are actively trying to solve what they clearly
recognize is a problem. Some mine operators
had switched to low sulfur fuel that reduces
particulate levels. Some had increased mine
ventilation. One company had tried a soy-
based fuel and found it lowered particulate
levels. Several were instituting better
maintenance techniques for equipment.
Another had hired extra diesel mechanics.
Several companies had purchased
electronically controlled, cleaner, engines.
Another was testing a prototype of a new
filter system. Yet another was using
disposable diesel exhaust filters. These were
not all flawless attempts, nor were they all
inexpensive. But one presenter after another
described examples of serious efforts
currently underway to reduce diesel
emissions. (Hricko, 1996).

Toolbox

In March of 1997, MSHA issued, in
draft form, a publication entitled
‘‘Practical Ways to Control Exposure to
Diesel Exhaust in Mining—a Toolbox’’.
The draft publication was disseminated
by MSHA to all underground mines
known to use diesel equipment and
posted on MSHA’s Web site. Following
comment, the toolbox was finalized in
the Fall of 1997 and disseminated. For
the convenience of the mining
community, a copy is reprinted as an
Appendix at the end of this document.

The material on controls is organized
as a ‘‘toolbox’’ so that mine operators
have the option of choosing the control
technology that is most applicable to
their mining operation for reducing
exposures to dpm. The Toolbox
provides information about nine types
of controls that can reduce dpm
emissions or exposures: Low emission
engines; fuels; aftertreatment devices;
ventilation; enclosed cabs; engine
maintenance; work practices and
training; fleet management; and
respiratory protective equipment.

The Estimator

MSHA has developed a model that
can help mine operators evaluate the
effect of alternative controls on dpm
concentrations. The model is in the
form of a template that can be used on
standard computer spreadsheet
programs; as information about a new
combination of controls is entered, the
results are promptly displayed. A
complete description of this model,
referred to as ‘‘the Estimator,’’ and
several examples, are presented in part
V of this preamble. MSHA intends to
make this model widely available to the
mining community, and hopes to
receive comments in connection with
this rulemaking based on the results of
estimates conducted with this model.

History of Diesel Aftertreatment Devices
in Mining

For many years, the majority of the
experience has been with the use of
oxidation catalytic converters (OCCs),
but in more recent years both ceramic
and paper filtration systems have also
been used more widely.

OCCs began to be used in
underground mines in the 1960’s to
control carbon monoxide, hydrocarbons
and odor (Haney, Saseen, Waytulonis,
1997). That use has been widespread. It
has been estimated that more than
10,000 OCCs have been put into the
mining industry over the years
(McKinnon, dpm Workshop, Beckley,
WV, 1995).

When such catalysts are used in
conjunction with low sulfur fuel, there
is a reduction of up to 90 percent of
carbon monoxide, hydrocarbons and
aldehyde emissions, and nitric oxide
can be transformed to nitrogen dioxide.
Moreover, there is also an
approximately 20 percent reduction in
diesel particulate mass. The diesel
particulate reduction comes from the
elimination of the soluble organic
compounds that, when condensed
through the cooling phase in the
exhaust, will attach to the elemental
carbon cores of diesel particulate.
Unfortunately, this effect is lost if the
fuel contains more than 0.05 percent
sulfur. In such cases, sulfates can be
produced which ‘‘poison’’ the catalyst,
severely reducing its life. With the use
of low sulfur fuel, some engine
manufacturers have certified diesel
engines with catalytic converter systems
to meet EPA requirements for lower
particulate levels (see section 4 of this
part).

The particulate trapping capabilities
of some OCCs are even higher. In 1995,
the EPA implemented standards
requiring older buses in urban areas to
reduce the dpm emissions from rebuilt
bus engines. (40 CFR 85.1403).
Aftertreatment manufacturers developed
catalytic converter systems capable of
reducing dpm by 25%. Such systems are
available for larger diesel engines
common in the underground metal and
nonmetal sector.

Other types of aftertreatment devices
capable of more significant reductions
in particulate levels began to be
developed for commercial applications
following EPA rules in 1985 limiting
diesel particulate emissions from heavy
duty diesel engines. The wall flow type
ceramic honeycomb diesel particulate
filter system was initially the most
promising approach (SAE, SP–735,
1988). However, due to the extensive
work performed by the engine

manufacturers on new technological
designs of the diesel engine’s
combustion system, and the use of low
sulfur fuel, particulate traps turned out
to be unnecessary to comply with the
EPA standards of the time.

While this work was underway,
efforts were also being made to transfer
this aftertreatment technology to the
mining industry. The former Bureau of
Mines investigated the use of catalyzed
diesel particulate filters in underground
mines in the United States (BOM, RI–
9478, 1993). The investigation
demonstrated that filters could work,
but that there were problems associated
with their use on individual unit
installations, and the Bureau made
recommendations for installation of
ceramic filters on mining vehicles. But
as noted by one commenter at one of the
MSHA workshops in 1995, ‘‘while
ceramic filters give good results early in
their life cycle, they have a relatively
short life, are very expensive and
unreliable.’’ (Ellington, dpm Workshop,
Salt Lake City, UT, 1995).

Canadian mines also began to
experiment with ceramic traps in the
1980’s with similar results (BOM, IC
9324, 1992). Work in Canada today
continues under the auspices of the
Diesel Emission Evaluation Program
(DEEP), established by the Canadian
Centre for Mineral and Energy
Technology in 1996 (DEEP Plenary
Proceedings, November 1996). The goals
of DEEP are to: (1) Evaluate aerosol
sampling and analytical methods for
dpm; and (2) evaluate the in-mine
performance and costs of various diesel
exhaust control strategies.

Work with ceramic filters in the last
few years has led to the development of
the ceramic fiber wound filter cartridge
(SAE, SP–1073, 1995). The ceramic fiber
has been reported by the manufacturer
to have dpm reduction efficiencies up to
80 percent. This system has been used
on vehicles to comply with German
requirements that all diesel engines
used in confined areas be filtered. Other
manufacturers have made the wall flow
type ceramic honeycomb dpm filter
system commercially available to meet
the German standard. In the case of
some engines, a choice of the two types
is available; but depending upon
horsepower, this may not always be the
case.

In the early 1990’s, MSHA worked
with the former Bureau of Mines and a
filter manufacturer to successfully
develop and test a pleated paper filter
for wet water scrubber systems of
permissible diesel powered equipment.
The dpm reduction from these filters
has been determined in the field by the
former BOM to be up to 95% (BOM, IC
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9324). The same type of filter has been
used in recently developed dry systems
for permissible machines, with reported
laboratory reductions in dpm of 98%
(Paas, dpm Workshop, Beckley WV,
1995).

ANPRM Comments
The ANPRM requested information

about several kinds of work practices
that might be useful in reducing dpm
concentrations. These comments were
provided well before the workshops
mentioned above, and before MSHA
issued its diesel equipment standard for
underground coal mines, and are thus
somewhat dated. But, solely to illustrate
the range of comments received, the
following sections review the comments
concerning certain work practices—fuel
type, fuel additives, and maintenance
practices.

Type of Diesel Fuel Required
It has been well established that the

quality of diesel fuel influences
emissions. Sulfur content, cetane
number, aromatic content, density,
viscosity, and volatility are interrelated
fuel properties which can influence
emissions. Sulfur content can have a
significant effect on diesel emissions.

Use of low sulfur diesel fuel reduces
the sulfate fraction of dpm matter
emissions, reduces objectionable odors
associated with diesel exhaust and
allows oxidation catalysts to perform
properly. The use of low sulfur fuel also
reduces engine wear and maintenance
costs. Fuel sulfur content is a
particularly important parameter when
the fuel is used in low emission diesel
engines. Low sulfur diesel fuel is
available nationwide due to EPA
regulations. (40 CFR parts 80 and 86.) In
MSHA’s ANPRM, information was
requested on what reduction in
concentration of diesel particulate can
be achieved through the use of low
sulfur fuel. Information was also
solicited as to whether the use of low
sulfur fuel reduces the hazard
associated with diesel emissions.

Responses from commenters stated
that there would be a positive reduction
in particulate with the use of low sulfur
fuel. One commenter stated that the
brake specific exhaust emissions
(grams/brake horsepower-hour) of
particulate would decrease by about
0.06 g/bhp-hr for a fuel sulfur reduction
of 0.25 weight percent sulfur. The
particulate reduction effect is
proportional to the change in sulfur
content. Another commenter stated that
a typical No. 2 diesel fuel containing
0.25 percent weight sulfur will include
1 to 1.6 grams of sulfate particulate per
gallon of fuel consumed. A fuel

containing 0.05 percent weight sulfur
will reduce sulfate particulate to 0.2–0.3
grams per gallon of fuel consumed, an
80 percent reduction.

In responding to the question on
whether reducing the sulfur content of
the fuel will reduce the health hazard
associated with diesel emissions,
several commenters stated that they
knew of no evidence that sulfur
reduction reduces the hazard of the
particulate. MSHA also is not aware of
any data supporting the proposition that
reducing the sulfur content of the fuel
will reduce the health hazard associated
with diesel emissions. However, in the
preamble to the final rule for the EPA
requirement for the use of low sulfur
fuel, EPA stated that there were a
number of benefits which could be
attributed to lowering the sulfur content
of diesel fuel. The first area was in
exhaust aftertreatment technology.
Reductions in fuel sulfur content will
result in small reductions in sulfur
compounds being emitted. This will
cause the whole particulate
concentration from the engine to be
reduced. However, the number of
carbon particles is not reduced,
therefore, the total carbon concentration
would be the same.

The major benefit of using low sulfur
fuel is that the reduction of sulfur
allows for the use of some aftertreatment
devices such as catalytic converters, and
catalyzed particulate traps which were
prohibited with fuels of high sulfur
content (greater than 0.05 percent
sulfur). The high sulfur content led to
sulfate particulate that when passed
through the catalytic converter or
catalyzed traps was changed to sulfuric
acid when the sulfates came in contact
with water vapor. Using low sulfur fuel
permits these devices to be used.

The second area of benefits that the
EPA noted was that of reduced engine
wear with the use of low sulfur fuel.
Reducing engine wear will help
maintain engines in their near
manufactured condition that would
help limit increases in particulate
matter due to lack of maintenance or age
of the engine.

Other questions posed in the ANPRM
requested information concerning the
differences in No. 1 and No. 2 diesel
fuel regarding particulate formation; the
current sulfur content of diesel fuel
used in mines; and when would 0.05
percent sulfur fuel be available to the
mining industry.

In response to those questions,
commenters stated that a difference in
No. 1 and No. 2 fuel regarding
particulate formation would be that No.
1 fuel typically has less sulfur than No.
2 fuel and would therefore be expected

to produce less particulate. Also, the
No. 1 fuel has a lower density, boiling
range and aromatic content and a higher
cetane number. All of these fuel
property differences tend to cause lower
particulate emissions.

Commenters also stated that the sulfur
content of fuels commercially available
for diesel-powered equipment can vary
from nearly zero to 1 percent. The
national average sulfur content for
commercial No. 2 diesel fuel is
approximately 0.25 percent. One
commenter stated that sulfur content
varied from region to region and the
National Institute of Petroleum and
Energy Research survey could be used
to get the answers for specific regions.

Commenters noted that low sulfur
fuel, less than 0.05 percent sulfur,
would be available for on-highway use
as mandated by the EPA by October
1993. Also, California requires the
statewide availability of 0.05 percent
sulfur fuel for all diesel engine
applications by the same date. Although
the EPA mandate ensures that low
sulfur fuel will be available throughout
the nation, commenters indicated the
availability for off-road and mining
application was uncertain at that time.

The ANPRM also requested
information on the differences in the per
gallon costs among No. 1, No. 2 and 0.05
percent sulfur fuel; how much fuel is
used annually in the mining industry;
and what would be the economic
impact on mining of using 0.05 percent
sulfur fuel. In response, commenters
stated that No. 1 fuel typically costs the
user 10 to 20 percent more than does
No. 2 fuel. They also stated that the
price of 0.05 percent sulfur fuel will
eventually be set by the competitive
market conditions. No information was
submitted for accurately estimating fuel
usage costs to the industry. The
economic impact on the mining
industry of using 0.05 percent fuel will
vary greatly from mine to mine. Factors
influencing that cost are a mine’s
dependence on diesel powered
equipment, the location of the mine and
existing regulation. Mines relying
heavily on diesel equipment will be
most impacted.

Another commenter stated that the
price for 0.05 percent fuel is forecast to
average about 2 cents per gallon higher
than the price for typical current No. 2
fuel. Kerosene and No. 1 distillate are
forecast as 2 to 4 cents per gallon above
0.05 percent fuel and 4 to 6 cents above
current No. 2 fuel. A recent census of
mining and manufacturing dated 1987
showed mining industry energy
consumption from all sources to total
1968.4 trillion BTU per year. Coal
mining alone used 9.96 million barrels
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annually of distillate, at a cost of 258.1
million dollars. Included in these
quantities was diesel fuel for surface
equipment and vehicles at or around the
mine site. The commenter also stated
that applying a cost increase of 2 cents
per gallon to the total industry distillate
consumption would increase annual
fuel costs by $24.3 million. For coal
mining only, the cost increase would be
$8.4 million annually.

While MSHA does not have an
opinion on the accuracy of the
information received in this regard, it is
in any event dated. Since the time that
the ANPRM was open, the availability
of low sulfur fuel has become more
common. Comments received at
MSHA’s Diesel Workshops indicate that
low sulfur fuel is readily available and
that all that is needed to obtain it is to
specify the desired fuel quality on the
purchase order. The differences in the
fuel properties of No. 1 and No. 2 fuel
are consistent with specifications
provided by ASTM and other literature
information concerning fuel properties.

Fuel Additives
Information relative to fuel additives

was requested in MSHA’s ANPRM. The
ANPRM requested information on the
availability of fuel additives that can
reduce dpm or additives being
developed; what diesel emissions
reduction can be expected through the
use of these fuel additives; the cost of
additives and advantages to their use;
and will these fuel additives introduce
other health hazards. One commenter
stated that cetane improvers and
detergent additives can reduce dpm
from 0 to 10 percent. The data, however,
does not indicate consistent benefits as
in the case with sulfur reduction.
Oxygenate additives can give larger
benefits, as with methanol, but then the
oxygenate is not so much an additive as
a fuel blend. Another commenter stated
the cost depended on the price and
concentration of the additive. This
commenter estimated the cost to be
between three and seven cents per
gallon of fuel.

Another commenter stated that some
additives are used for reducing injector
tip fouling, other alternative additives
also are offered specifically for the
purpose of reducing smoke or dpm such
as organometallic compounds, i.e.,
copper, barium, calcium, iron or
platinum; oxygenate supplements
containing alcohols or peroxides; and
other proprietary hydrocarbons. The
commenter did not quantify the
expected reductions in dpm.

The former Bureau of Mines
commented on an investigation of
barium-based, manganese based, and

ferrocene fuel additives. Details of the
investigation are found in the literature
(BOM, IC 9238, 1990). In general, fuel
additives are not widely used by the
mining industry to reduce dpm or to
reduce regeneration temperatures in
ceramic particulate filters. Research has
shown aerosol reductions of about 30
percent without significant adverse
impacts although new pollutants
derived from the fuel additive remain a
question.

One commenter stated that a cetane
improver and detergent additives
should not exceed 1 cent per gallon at
the treat rates likely to be used. The use
of oxygenates depends on which one
and how much but would be perhaps an
order of magnitude higher than the use
of a cetane improver. One commenter
also added that any fuel economy
advantages would be very small.

In response to the creation of a health
hazard when using additives, one
commenter stated that excessive
exposure to cetane improver (alkyl
nitrates), which is hazardous to humans,
requires special handling because of
poor thermal stability. Detergent
additives are similar to those used in
gasoline and probably have similar
safety and health issues. Except at low
load operation, additives are not likely
to result in any significant quantity in
the exhaust. Another commenter stated
that the effect on human health of new
chemical exhaust species that may
result from the use of some of these
additives has not been determined.
Engine manufacturers also are
concerned about the use of such
products because their effectiveness has
not always been adequately
demonstrated and, in many cases, the
effect on engine durability has not been
well-documented for different designs
and operating conditions.

MSHA agrees with the commenters
that fuel additives can affect engine
performance and exhaust emissions.
MSHA’s experience with additives has
shown that they can enhance fuel
quality by increasing the cetane number,
depressing the cloud point, or in the
case of a barium based additive, affect
the combustion process resulting in a
reduction of particulate output. MSHA’s
experience also has shown that in most
cases the effects of an additive on
engine performance or emissions cannot
be adequately determined without
extensive research. The additives listed
on EPA’s list of ‘‘registered additives’’
meet the requirements of EPA’s
standards in 40 CFR part 79.

MSHA is concerned about the use of
untested fuel additives. A large number
of additives are currently being
marketed to reduce emissions. These

additives include cetane improvers that
increase the cetane number of the fuel,
which may reduce emissions and
improve starting; detergents that are
used primarily to keep the fuel injectors
clean; dispersants or surfactants that
prevent the formation of thicker
compounds that can form deposits on
the fuel injectors or plug filters. While
the use of many of these additives will
result in reduced particulate emission,
some have been found to introduce
harmful agents into the environment.
For this reason, it is a good idea to limit
the use of additives to those that have
been registered by the EPA.

Maintenance Practices
The ANPRM requested information

concerning what maintenance
procedures are effective in reducing
diesel particulate emissions from
existing diesel-powered equipment, and
what additional maintenance
procedures would be required in
conjunction with anticipated
developments of new diesel particulate
reduction technology. Information was
also requested about the amount of time
to perform the maintenance procedures
and if any, loss of production time.

Commenters stated that some
maintenance procedures have a very
dramatic impact on particulate
emissions, while other procedures that
are equally important for other reasons
have little or no impact at all on
particulates. Another commenter stated
that maintenance procedures are
intended to ensure that the engine
operates and will continue to operate as
intended. Such procedures will not
reduce diesel particulate below that of
the new, original equipment. A
commenter stated that the diesel engine
industry experience has demonstrated
that emissions deterioration over the
useful life of an engine is minimal.

Commenters stated that depending on
the implied technology, the need for
additional maintenance will be based on
complexity of the control devices. Also,
time for maintenance will be dependent
on complexity of the control device.
Some production loss will occur due to
increased maintenance procedures.

MSHA agrees with the commenters’
view that maintenance does affect
engine emissions, some more
dramatically than others. Research has
clearly shown that without engine
maintenance, all engine emissions will
increase greatly. For example, the
former Bureau of Mines, in conjunction
with Southwest Research, conducted
extensive research on the effects of
maintenance on diesel engines which
indicated this result (BOM contract H–
0292009, 1979). MSHA agrees that



17514 Federal Register / Vol. 63, No. 68 / Thursday, April 9, 1998 / Proposed Rules

emissions increase is minimal over the
useful life of the engine only when
proper maintenance is performed daily.
However, MSHA believes that with the
awareness of the increased
maintenance, production may not be
lost due to the increased time that the
machines are able to operate without
unwanted down time due to poor
maintenance practices.

MSHA’s diesel ‘‘toolbox’’ includes an
extensive discussion on the importance
of maintenance. It reminds operators
and diesel maintenance personnel of the
basic systems on diesel engines that
need to be maintained, and how to
avoid various problems. It includes
suggestions from others in the mining
community, and information on their
success or difficulties in this regard.

(7) Existing Mining Standards that
Limit Miner Exposure to Occupational
Diesel Particulate Emissions. MSHA
already has in place various
requirements that help to control miner
exposure to diesel emissions in
underground mines—including
exposure to diesel particulate. These
include ventilation requirements,
engine approval requirements, and
explicit restrictions on the
concentration of various gases in the
mine environment.

In addition, in 1996, MSHA
promulgated a rule governing the use of
diesel-powered equipment in
underground coal mines. (61 FR 55412).
While the primary focus of the
rulemaking was to promote the safe use
of diesel engines in the hazardous
environment of underground coal
mines, various parts of the rule will
help to control exposure to harmful
diesel emissions in those mines. The
new rule revised and updated MSHA’s
diesel engine approval requirements
and the ventilation requirements for
underground coal mines using diesel
equipment, and established
requirements concerning diesel fuel
sulfur content and the idling,
maintenance and emissions testing of
diesel engines in underground coal
mines.

Background
Beginning in the 1940s, mining

regulations were promulgated to
promote the safe and healthful use of
diesel engines in underground mines. In
1944, part 31 established procedures for
limiting the gaseous emissions and
establishing the recommended dilution
air quantity for mine locomotives that
use diesel fuel. In 1949, part 32
established procedures for testing of
mobile diesel-powered equipment for
non-coal mines. In 1961, part 36 was
added to provide requirements for the

use of diesel equipment in gassy
noncoal mines, in which engines must
be temperature controlled to prevent
explosive hazards. These rules
responded to research conducted by the
former Bureau of Mines.

Continued research by the former
Bureau of Mines in the 1950s and 1960s
led to refinements of its ventilation
recommendations, particularly when
multiple engines are in use. An airflow
of 100 to 250 cfm/bhp was
recommended for engines that have a
properly adjusted fuel to air ratio (Holtz,
1960). An additive ventilation
requirement was recommended for
operation of multiple diesel units,
which could be relaxed based on the
mine operating procedures. This
approach was subsequently refined to
become a 100–75–50 percent guideline
(MSHA Policy Memorandum 81–19MM,
1981). Under this guideline, when
multiple pieces of diesel equipment are
operated, the required airflow on a split
of air would be the sum of: (a) 100
percent of the nameplate quantity for
the vehicle with the highest nameplate
air quantity requirement; (b) 75 percent
of the nameplate air quantity
requirement of the vehicle with the next
highest nameplate air quantity
requirement; and (c) 50 percent of the
nameplate airflow for each additional
piece of diesel equipment.

Diesel Equipment Rule
On October 6, 1987, MSHA published

in the Federal Register (52 FR 37381) a
notice establishing a committee to
advise the Secretary of Labor on health
and safety standards related to the use
of diesel-powered equipment in
underground coal mines. The ‘‘Mine
Safety and Health Advisory Committee
on Standards and Regulations for
Diesel-Powered Equipment in
Underground Coal Mines’’ (the
Advisory Committee) addressed three
areas of concern: the approval of diesel-
powered equipment, the safe use of
diesel equipment in underground coal
mines, and the protection of miners’
health. The Advisory Committee
submitted its recommendations in July
1988.

With respect to the approval of diesel-
powered equipment, the Advisory
Committee recommended that all diesel
equipment except for a limited class, be
approved for use in underground coal
mines. This approval would involve
both safety (e.g., fire suppression
systems) and health factors (e.g.,
maximum exhaust emissions).

With respect to the safe use of diesel
equipment in underground coal mines,
the Advisory Committee recommended
that standards be developed to address

the safety aspects of the use of diesel
equipment, including such concerns as
equipment maintenance, training of
mechanics, and the storage and
transport of diesel fuel.

The Advisory Committee also made
recommendations concerning miner
health, discussed later in this section.

As a result of the Advisory
Committee’s recommendations on
approval and safe use, MSHA developed
and, on October 25, 1996, promulgated
as a final rule, standards for the
‘‘Approval, Exhaust Gas Monitoring,
and Safety Requirements for the Use of
Diesel-Powered Equipment in
Underground Coal Mines.’’ (61 FR
55412).

The October 25, 1996 final rule on
diesels focuses on the safe use of diesels
in underground coal mines. Integrated
requirements are established for the safe
storage, handling, and transport of
diesel fuel underground, training of
mine personnel, minimum ventilating
air quantities for diesel powered
equipment, maintenance requirements,
fire suppression, and design features for
nonpermissible machines. While the
focus was on safety, certain rules related
to emissions are included in the final
rule. For example, the final rule requires
maintenance on diesel powered
equipment. Regular maintenance on
diesel powered equipment should keep
the diesel engine and vehicle operation
at its original or baseline condition.
However, as a check that the
maintenance is being performed, MSHA
wrote a standard for checking the
gaseous CO emission levels on
permissible and heavy duty outby
machines to determine the need for
maintenance. The CO check requires
that a regular repeatable loaded engine
condition be run on a weekly basis and
the CO measured. Carbon monoxide is
a good indicator of engine condition. If
the CO measurement increases to a
higher concentration than what was
normally measured during the past
weekly checks, then a maintenance
person would know that either the
regular maintenance was missed or a
problem has developed that is more
significant than could be identified by a
general daily maintenance program.

Consistent with the Advisory
Committee’s recommendation, the final
rule, among other things, requires that
virtually all diesel-powered engines
used in underground coal mines be
approved by MSHA. (30 CFR part 7
(approval requirements), part 36
(permissible machines defined), and
part 75 (use of such equipment in
underground coal mines). The approval
requirements, among other things, are
designed to require clean-burning
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2 On December 23, 1997, the National Mining
Association and Energy West Mining Company
filed petitions for review of the final rule. National

Mining Association versus Secretary of Labor, Nos.
96–1489 and 96–1490. These cases were
consolidated and held in abeyance pending

discussions between the mining industry and the
Secretary. On March 19, 1998, petitioners filed an
Unopposed Joint Motion for Voluntary Dismissal.
This motion is still pending before the Court.

engines in diesel-powered equipment.
(61 FR 55417). In promulgating the final
rule, MSHA recognized that clean-
burning engines are ‘‘critically
important’’ to reducing toxic gasses to
levels that can be controlled through
ventilation. (Id.). To achieve the
objective of clean-burning engines, the
rule sets performance standards which
must be met for virtually all diesel-
powered equipment in underground
coal mines (30 CFR part 7).

Consistent with the recommendation
of the Advisory Committee, the
technical requirements for approved
diesel engines include undiluted
exhaust limits for carbon monoxide and
oxides of nitrogen. (61 FR 55419). As
recommended by the Advisory
Committee, the limits for these gasses
are derived from existing 30 CFR part
36. (61 FR 55419). Also consistent with
the recommendation of the Advisory
Committee, the final rule requires that
as part of the approval process,
ventilating air quantities necessary to
maintain the gaseous emissions of diesel
engines within existing required
ambient limits be set. (61 FR 55420). As
recommended by the Advisory
Committee, the ventilating air quantities
are required to appear on the engine’s
approval plate. (61 FR 55421).

The final rule also implements the
Advisory Committee’s recommendation
that a particulate index be set for diesel
engines. (61 FR 55421). Although, as
discussed below, there is not yet a
specific standard limiting miners’
exposure to diesel particulate, the
particulate index is nonetheless useful
in providing information to the mining
community so that operators can
compare the particulate levels generated
by different engines. (61 FR 55421).

Also consistent with the
recommendation of the Advisory
Committee, the final rule addresses the
monitoring and control of gaseous diesel
exhaust emissions. (30 CFR part 70; 61
FR 55413). In this regard, the final rule
requires that mine operators take
samples of carbon monoxide and
nitrogen dioxide. (61 FR 55413, 55430–
55431). Samples exceeding an action
level of 50 percent of the threshold

limits set forth in 30 CFR 75.322, trigger
corrective action by the mine operator.
(30 CFR part 70, 61 FR 55413). Also
consistent with the Advisory
Committee’s recommendation, the final
rule requires that diesel-powered
equipment be adequately maintained.
(30 CFR 75.1914; 61 FR 55414). Among
other things, as recommended by the
Advisory Committee, the rule requires
the weekly examination of diesel-
powered equipment, including testing
of undiluted exhaust emissions for
certain types of equipment. (30 CFR
75.1914(g)). In addition, consistent with
the Advisory Committee’s
recommendation, operators are required
to establish programs to ensure that
those performing maintenance on diesel
equipment are qualified. (61 FR 55414).
As explained in the preamble,
maintenance requirements were
included because of MSHA’s
recognition that inadequate equipment
maintenance can, among other things,
result in increased levels of harmful
gaseous and particulate components
from diesel exhaust. (61 FR 55413–
55414).

Consistent with the Advisory
Committee’s recommendation, the final
rule also requires that underground coal
mine operators use low sulfur diesel
fuel. (30 CFR 75.1901; 61 FR 55413).
The use of low sulfur fuel lowers not
only the amount of gaseous emissions,
but also the amount of diesel particulate
emissions. (Id.). To further reduce
miners’ exposure to diesel exhaust, the
final rule prohibits operators from
unnecessarily idling diesel-powered
equipment. (30 CFR 75.1916(d)).

Also consistent with the
recommendation of the Advisory
Committee, the final rule establishes
minimum air quantity requirements in
areas of underground coal mines where
diesel-powered equipment is operated.
(30 CFR 75.325). As set forth in the
preamble, MSHA believes that effective
mine ventilation is a key component in
the control of miners’ exposure to gasses
and particulate emissions generated by
diesel equipment. (61 FR 55433). The
final rule also requires generally that
mine operators maintain the approval

plate quantity minimum airflow in areas
of underground coal mines where
diesel-powered equipment is operated.
(30 CFR 75.325 2).

The diesel equipment rule will help
the mining community use diesel-
powered equipment more safely in
underground coal mines. As discussed
throughout this preamble, the diesel
equipment rule has many features
which, though it was not their primary
purpose, will incidently reduce harmful
diesel emissions in underground coal
mines—including the particulate
component of these emissions. (The
requirements of the diesel equipment
rule are highlighted with a special
typeface in MSHA’s publication,
‘‘Practical Ways to Control Exposure to
Diesel Exhaust in Mining—a Toolbox’’,
reprinted as an Appendix at the end of
this document. An example is the
requirement in the diesel equipment
rule that all engines used in
underground coal mines be approved
engines, and be maintained in approved
condition —thus reducing emissions at
the source.

In developing this safety rule,
however, MSHA did not explicitly
consider the risks to miners of a
working lifetime of dpm exposure at
very high levels, nor the actions that
could be taken to specifically reduce
those exposure levels in underground
coal mines. Moreover, the rule does not
apply to the remainder of the mining
industry, where the use of diesel
machinery is much more intense than in
underground coal.

Gas Limits

Various organizations have
established or recommended limits for
many of the gasses occurring in diesel
exhaust. Some of these are listed in
Table II–2, together with information
about the limits currently enforced by
MSHA. MSHA requires mine operators
to comply with gas specific threshold
limit values (TLV’s) recommended by
the American Conference of
Governmental Industrial Hygienists
(ACGIH) in 1972 (for coal mines) and in
1973 (for metal and nonmetal mines).

TABLE II–2.—GASEOUS EXPOSURE LIMITS (PPM)

MSHA limits

Pollutant Range of limits
recommended Coal a M/NM b

HCHO ............................................................................................................................... c 0.016 d. 0.3 2 2
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TABLE II–2.—GASEOUS EXPOSURE LIMITS (PPM)—Continued

CO .................................................................................................................................... d 25 50 50 50
CO2 ................................................................................................................................... c 5,000 5,000 5,000 5,000
NO2 ................................................................................................................................... c d e 25 25 25 25
NO2 ................................................................................................................................... f 1 d 3 5 5
SO2 ................................................................................................................................... c d 2 e 5 2 5

Table Notes:
a ACGIH, 1972.
b ACGIH, 1973.
c NIOSH recommended exposure limit (REL), based on a 10-hour, time-weighted average.
d ACGIH, 1996.
e OSHA permissible exposure limit (PEL).
f NIOSH recommends only a 1-ppm, 15-minutes, short-term exposure limit (STEL).

In 1989, MSHA proposed changing
some of these limits in the context of a
proposed rule on air quality standards.
(54 FR 35760). Following opportunity
for comment and hearings, a portion of
that proposed rule, concerning control
of drill dust, has been promulgated, but
the other components are still under
review. To change a limit at this point
in time requires a regulatory action; the
rule does not provide for their automatic
updating.

(8) How Other Jurisdictions are
Restricting Occupational Exposure to
Diesel Soot. MSHA’s proposed rule is
the first effort by the Federal
government to deal with the special
risks faced by workers exposed to diesel
exhaust on the job—because, as
described in detail in the part III of this
preamble, miner exposures are an order
of magnitude above those of any other
group of workers. But others have been
looking at the problem of exposure to
diesel soot.

States

As noted in the first section of this
part, few underground coal mines now
use diesel engines. Several states have
had bans on the use of such equipment:
Pennsylvania, West Virginia, and Ohio.

Recently, Pennsylvania has replaced
its ban with a special law that permits
the use of diesel-powered equipment in
deep coal mines under certain
circumstances. The Pennsylvania statute
goes beyond MSHA’s new regulation on
the use of diesel-powered equipment in
underground coal mines. Of particular
interest is that it specifically addresses
diesel particulate. The State did not set
a limit on the exposure of miners to
dpm, nor did it establish a limit on the
concentration of dpm in deep coal
mines. Rather, it approached the issue
by imposing controls that will limit
dpm emissions at the source.

First, all diesel engines used in
underground deep coal mines in
Pennsylvania must be MSHA-approved
engines with an ‘‘exhaust emissions
control and conditioning system’’ that
meets certain tests. (Article II–A,

Section 203–A, Exhaust Emission
Controls). Among these are dpm
emissions from each engine no greater
than ‘‘an average concentration of 0.12
mg/m3 diluted by fifty percent of the
MSHA approval plate ventilation for
that diesel engine.’’ In addition, any
exhaust emissions control and
conditioning system must include a
‘‘Diesel Particulate Matter (DPM) filter
capable of an average of ninety-five
percent or greater reduction of dpm
emissions.’’ It also requires the use of an
oxidation catalytic converter. Thus, the
Pennsylvania statute requires the use of
low-emitting engines, and then the use
of aftertreatment devices that
significantly reduce what particulates
are emitted from these engines.

The Pennsylvania law also has a
number of other requirements for the
safe use of diesel-powered equipment in
the particularly hazardous
environments of underground coal
mines. Many of these parallel the
requirements in MSHA’s rule. Like
MSHA’s requirements, they too can
result in reducing miner exposure to
diesel particulate—e.g., regular
maintenance of diesel engines by
qualified personnel and equipment
operator examinations. The
requirements in the Pennsylvania law
take into account the need to maintain
the aftertreatment devices required to
control diesel particulate (see, e.g.,
section 217–A(b)(6)).

West Virginia has also lifted its ban,
subject to rules to be developed by a
joint labor-management commission.
MSHA understands that pursuant to the
West Virginia law lifting the ban, the
Commission has only a limited time to
determine the applicable rules, or the
matter is to be referred to an arbitrator
for resolution.

Other Countries

Concerns about air pollution have
been a major impetus for most
countries’ standards on vehicle
emissions, including diesel particulate.
Most industrialized nations recognize
the fundamental principle that their

citizens should be protected against
recognized health risks from air
pollution and that this requires the
control of particulate such as diesel
exhaust. In November of 1995, for
example, the government of the United
Kingdom recommended a limit on PM10,
and noted it would be taking further
actions to limit airborne particulate
matter (including a special study of dust
from surface minerals workings).

Concerns about international trade
have been another impetus. Diesel
engines are sold to an international
market to power many types of
industrial and nonindustrial machinery
and equipment. The European Union
manufacturers exported more than 50
percent of their products, mainly to
South Korea, Taiwan, China, Australia,
New Zealand and the United States.
Germany and the United Kingdom, two
major producers, have pushed for
harmonized world standards to level the
playing field among the various
countries’ engine producers and to
simplify the acceptance of their
products by other countries (Financial
Times, 1996). This includes products
that must be designed to meet pollution
standards. The European Union (EU) is
now considering a proposal to set an
EU-wide standard for the control of the
emission of pollutants from non-road
mobile machinery (Official Journal of
European Communities, 1995). The
proposal would largely track that of the
U.S. Environmental Protection Agency’s
final rule on the Control of Air Pollution
Determination of Significance for
Nonroad Sources and Emission
Standards for New Nonroad
Compression-Ignition Engines at or
above 37 kilowatts (50 HP)p (discussed
in section 3 of this part of the preamble).

A third impetus to action has been the
studies of the health effects of worker
exposure to diesel exhaust—many of
which have been epidemiological
studies concerning workers in other
countries. As noted in Part III of this
preamble, the studies include cohorts of
Swedish dock workers and bus garage
workers, Canadian railway workers and
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3 TPK is the technical exposure limit of a
hazardous material that defines the concentration of
gas, vapour or airborne particulates which is the

minimum possible with current technology and
which serves as a guide for necessary protective
measures and monitoring in the workplace.

4 Colloid dust is defined as that part of total
respirable dust in a workplace that passes the
alveolar ducts of the worker.

miners, French workers, London
transport workers, and Danish chimney
sweeps.

Below, the agency summarizes some
information obtained on exposure limits
of other countries. Due to differences in
regulatory schemes among nations
considering the effects of diesel exhaust,
countries which have addressed the
issue are more likely to have issued
recommendations rather than a
mandatory maximum exposure limit.
Some of these may have issued
mandatory design features for diesel
equipment to assist in achieving the
recommended exposure level.
Measurement systems also vary.
Germany

German legislation on dangerous
substances classifies diesel engine
emissions as carcinogenic. Therefore,
diesel engines must be designed and
operated using the latest technology to
cut emissions. This always requires an
examination to determine whether the
respective operations and activities may
be carried out using other types of less
polluting equipment. If, as a result of
the examination, it is decided that the
use of diesel engines is necessary
measures must be instituted to reduce
emissions. Such measures can include
low-polluting diesel engines, low
sulphur fuels, regular maintenance, and,
where technology permits, the use of
particulate traps. To reduce exposure
levels further, diesel engine emissions
may be regulated directly at the source;
ventilation systems may be required to
be installed.

The use of diesel vehicles in a fully
or partly enclosed working space—such
as in an underground mine—may be
restricted by the government, depending
on the necessary engine power or load
capacity and on whether the relevant
operation could be accomplished using
a non-polluting vehicle, e.g., an
electrically powered vehicle. When
determining whether alternate
equipment is to be used, the burden to

the operator to use such equipment is
also considered.

In April of 1997, the following
permissible exposure limits (TRK 3) for
diesel engine emissions were instituted
for workplaces in mining.

(1) Non-coal underground mining and
construction work: TRK = 0.3 mg/m3 of
colloid dust.4

(2) other: TRK = 0.1 mg/m3 of colloid
dust.

(3) The average concentration of
diesel engine emissions within a period
of 15 minutes should never be higher
than four times the TRK value.

The TRK is ascertained by
determining the fraction of elemental
carbon in the colloid (fine) dust by
coulometric analysis. Determining the
fraction of elemental carbon always
involves the determination of total
organic carbon in the course of analysis.
If the workplace analysis shows that the
fraction of elemental carbon in total
carbon (elemental carbon plus organic
carbon) is lower than 50%, or is subject
to major fluctuations, then the TRK
limits total carbon in such workplaces
to 0.15 mg/m3.

Irrespective of the TRK levels, the
following additional measures are
considered necessary once the
concentration reaches 0.1 mg/m3 colloid
dust:

(1) Informing employees concerned;
(2) Limited working hours for certain

staff categories;
(3) Special working hours; and
(4) Medical checkups.
If concentrations continue to fail to

meet the TRK level, the employer must:
(1) Provide appropriate, effective,

hygienic breathing apparatus, and
(2) Ensure that workers are not kept

at the workplace for longer than
absolutely necessary and that health
regulations are observed.

Workers must use the breathing
apparatus if the TRK levels for diesel
engine emissions at the work place are
exceeded. Due to the interference of
recognized analysis techniques in coal

mining, it is currently impossible to
ascertain exposure levels in the air in
coal mines. As a consequence, the coal
mining authorities require the use of
special low-polluting engines in
underground mining and impose special
requirements on the supply of fresh air
to the workplace.
European Standards

On April 21, 1997, the draft of a
European directive that applied to
emissions from non-road mobile
machinery was prepared. The directive
proposed technical measures that would
result in a reduction in emissions from
internal-combustion engines (gasoline
and diesel) installed in non-road mobile
machinery, and type-approval
procedures that would provide
uniformity among the member nations
for the approval of these engines.

The directive proposed a two-stage
process. Stage 1, proposed to begin
December 31, 1997, was for three
different engine categories:
—A: 130 kW <= P <= 560 kW,
—B: 75 kW <= P < 130. kW,
—C: 37 kW <= P < 75 kW.

Stage 2, proposed to begin December
31, 1999, consisted of four engine
categories being phased-in over a four-
year period:
— D: after December 31,1999 for engines

of a power output of 18 kW <= P <
37 kW,

— E: after December 31, 2000 for
engines of a power output of 130
kW<= P <= 560 kW,

—F: after December 31, 2001 for engines
of a power output of 75 kW<= P < 130
kW,

—G: after December 31, 2002 for engines
of a power output of 37 kW<= P <=75
kW.
The emissions shown in the following

table for carbon monoxide,
hydrocarbons, oxides of nitrogen and
particulates are to be met for the
respective engine categories described
for stage I.

Net power (P) (kW)

Carbon
monoxide

(P)
(g/kWH)

Hydro-
carbon s

(HC)
(g/kWh)

Oxides of
nitrogen
(NOX)

(g/kWh)

Particulates
(PT)

(g/kWh)

130≤P<560 ....................................................................................................................... 5.0 1.3 9.2 0.54
75≤P<130 ......................................................................................................................... 5.0 1.3 9.2 0.70
37≤P<75 ........................................................................................................................... 6.5 1.3 9.2 0.85

The engine emission limits that have to be achieved for stage II are shown in the following table. The emissions
limits shown are engine-out limits and are to be achieved before any aftertreatment device is used.
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Net power (P) (kW)

Carbon
monoxide

(P)
(g/kWH)

Hydro-
carbons

(HC)
(g/kWh)

Oxides of
nitrogen
(NOX)

(g/kWh)

Particulates
(PT)

(g/kWh)

130≤P<560 ....................................................................................................................... 3.5 1.0 6.0 0.2
75≤P<130 ......................................................................................................................... 5.0 1.0 6.0 0.3
37≤P<75 ........................................................................................................................... 5.0 1.3 7.0 0.4
18≤P<37 ........................................................................................................................... 5.5 1.5 8.0 0.8

Canada (Related Developments in
Canada)

The Mining and Minerals Research
Laboratories (MMRL) of the Canada
Centre for Mineral and Energy
Technology (CANMET), an arm of the
Federal Department of Natural
Resources Canada (NRCAN), began
work in the early 1970s to develop
measurement tools and control
technologies for diesel particulate
matter (dpm). In 1978, I.W. French and
Dr. Anne Mildon produced a CANMET-
sponsored contract study entitled:
‘‘Health Implications of Exposure of
Underground Mine Workers to Diesel
Exhaust Emissions.’’ In this document,
an Air Quality Index (AQI) was
developed involving several major
diesel contaminants (CO, NO, NO2, SO2

and RCD—respirable combustible dust
which is mostly dpm). These
concentrations were divided by their
then current permissible exposure
limits, and the sum of the several ratios
indicates the level of pollution in the
mine atmosphere. The maximum value
for this Index was fixed at 3.0. This
criterion was determined by the known
health hazard associated with small
particle inhalation, and the known
chemical composition of dpm, among
other matters.

Subsequently, in 1986, the Canadian
Ad hoc Diesel Committee was formed
from all segments of the mining
industry, including: mine operators, the
labor force, equipment manufacturers,
research agencies including CANMET,
and Canadian regulatory bodies. The
objective was the identification of major
problems for research and development
attention, the undertaking of the
indicated studies, and the application of
the results to reduce the impact of diesel
machines on the health of underground
miners.

In 1990–91, CANMET developed an
RCD mine sampling protocol on behalf
of the Ad hoc Committee. Then current
underground sampling studies indicated
an average ratio of RCD to dpm of 1.5.
This factor accounted for the presence
of other airborne combustible liquids
including fuel, lubrication and
particularly drilling oils, in addition to
the dpm.

The original 1978 French-Mildon
study was updated under a CANMET
contract in 1990. It recommended that
the dpm levels be reduced to 0.5 mg/m3

(suggesting a corresponding RCD level
of 0.75 mg/m3).

However, in 1991, the Ad hoc
Committee decided to set an interim
recommended RCD level of 1.5 mg/m3

(the equivalent 1.0 mg/m3). This value
matched the then recommended, but not
promulgated, MSHA ‘‘Ventilation
Index’’ value for dpm of 1.0 mg/m3.
Consequently, all of the North American
mining industry then seemed to be
accepting the same maximum levels of
dpm.

It should be noted that for coal mine
environments or other environments
where a non-diesel carbonaceous
aerosol is present, RCD analysis is not
an appropriate measure of dpm levels.

Neither CANMET nor the Ad hoc
Committee is a regulatory body. In
Canada, mining is regulated by the
individual provinces and territories.
However, the federal laboratories
provide: research and development
facilities, advice based on research and
development, and engine/machine
certification services, in order to assist
the provinces in their diesel-related
mining regulatory functions.

Prior to the 1991 recommendation of
the Ad hoc Committee, Quebec enacted
regulations requiring: ventilation, a
maximum of 0.25% sulfur content in
diesel fuel; a prohibition on black
smoke; exhaust cooling to a maximum
temperature of 85°C; and the setting of
maximum contaminant levels. Since
1997, new regulations add the CSA
Standard for engine certification, a
maximum RCD level of 1.5 mg/m3, and
the application of an exhaust treatment
system.

Further, after the Ad hoc Committee
recommendation was published in 1991
(RCDmax = 1.5 mg/m3), various
provinces took the following actions:

(1) Five provinces—British Columbia,
Ontario, Quebec, New Brunswick, and
Nova Scotia, and the Northwest
Territories, adopted an RCD limit of 1.5
mg/m3.

(2) Two others, Manitoba and
Newfoundland/Labrador, have been
adopting the ACGIH TLVs.

(3) Two provinces, Alberta and
Saskatchewan, and the Yukon Territory,
continue to have no dpm limit.

Most Canadian Inspectorates accept
the CSA Standard for diesel machine/
engine certification. This Standard
specifies the undiluted Exhaust Quality
Index (EQI) criterion for calculation of
the ventilation in cfm, required for each
diesel engine/machine. Fuel sulfur
content, type of aftertreatment device
and rated engine load factor are on-site,
variable factors which may alter the
ventilation ultimately required. Diesel
fuel may not exceed 0.50% sulfur, and
must have a minimum flash point of
52°C. However, most mines in Canada
now use fuel containing less than 0.05%
sulfur by weight.

In addition to limiting the RCD
concentration, Qntario, established rules
in 1994 that required diesel equipment
to meet the Canadian Standards
Association ‘‘Non-Rail-Bound Diesel-
Powered Machines for use in Non-Gassy
Underground Mines’’ (CSA M424.2–
M90) Standard, excepting the
ventilation assessment clauses. As far as
fuel sulfur and flashpoint are
concerned, Ontario is intending to
change to: Smax = 0.05% from 0.25%,
and maximum fuel flash point = 38°C
from 52°C.

New Brunswick, in addition to
limiting the RCD concentration, requires
mine operators to submit an ambient air
quality monitoring plan. Diesel engines
above 100 horsepower must be certified,
and there is a minimum ventilation
requirement of 105 cfm/bhp.

Since 1996, the Ad hoc organization
and the industry consortium called the
Diesel Emissions Evaluation Program
(DEEP) have been cooperating in a
research and development program
designed to reduce dpm levels in mines.

World Health Organization (WHO)

Environmental Health Criteria 171 on
‘‘Diesel Fuel and Exhaust Emissions’’ is
a 1996 monograph published under
joint sponsorship of the United Nations
Environment Programme, the
International Labour Organisation, and
the World Health Organization. The
monograph provides a comprehensive
review of the literature and evaluates
the risks for human health and the
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environment from exposure to diesel
fuel and exhaust emissions.

The following tables compiled in the
monograph show diesel engine exhaust

limits for various exhaust components
and illustrate that there is international
concern about the amount of diesel

exhaust being released into the
environment.

TABLE II–3.—INTERNATIONAL LIMIT VALUES FOR COMPONENTS OF DIESEL EXHAUST LIGHT-DUTY VEHICLES (G/KM)

Region Carbon
monoxide Nitrogen oxides Hydrocarbons Particulates Comments

Austria ....................... 2.1 ........... 0.62 ....................... 0.25 ....................... 0.124 ..................... ≤3.5t; since 1991; from 1995, adoption of
European Union standards planned.

Canada ...................... 2.1 ........... 0.62 ....................... 0.25 ....................... 0.12 ....................... Since 1987.
European Union ........ 2.72 ......... 0.97 (with hydro-

carbons).
............................... 0.14 ....................... Since 1992.

1.0 ........... 0.7 ......................... ............................... 0.08 ....................... From 1996.
Finland ...................... .................. ............................... ............................... Since 1993..
Japan ........................ 2.1 ........... 0.7 ......................... 0.62 ....................... None ..................... Since 1986.

2.1 ........... 0.5 ......................... 0.4 ......................... 0.2 ......................... Since 1994.
Sweden, Norway ....... 2.1 ........... 0.62 (city) ..............

0.76 (highway)
0.25 ....................... 0.124 ..................... ≤3.5t; from motor year 1992.

Switzerland ................ 2.1 ........... 0.62 (city) ..............
0.76 (highway)

0.25 ....................... 0.124 ..................... ≤3.5t; since 1988; from 1995, adoption of
European Union standard planned.

USA (California) ........ 2.1–5.2 .... 0.2–0.6 .................. 0.2–0.3 (except
methane).

0.05 (up to 31000
km).

Depending on mileage.

US Environmental
Protection Agency.

2.1–2.6 .... 0.6–0.8 .................. 0.2 ......................... 0.05–0.12 .............. Depending on mileage.

TABLE II–4.—INTERNATIONAL LIMIT VALUES FOR COMPONENTS OF DIESEL EXHAUST HEAVY-DUTY VEHICLES (G/KWH)

Region Carbon mon-
oxide

Nitrogen
oxides Hydro carbons Particulates Comments

Austria ...................... 4.9 9.0 1.23 0.4
Canada ..................... 15.5 5.0 1.3 0.25 g/bhp-h.

15.5 5.0 1.3 0.1 g/bhp-h; from 1995–97.
European Union ....... 4.5 8.0 1.1 0.36 Since 1992.

4.0 7.0 1.1 0.15 From 1995–96.
Japan ........................ 7.4 5.0 2.9 0.7 Indirect injection engines.

7.4 6.0 2.9 0.7 Direct injection engines.
Sweden .................... 4.9 9.0 1.23 0.4
USA .......................... 15.5 5.0 1.3 0.07 g/bhp-h; bus.

15.5 4.0 1.3 0.1 g/bhp-h; truck.
15.5 5.0 1.3 0.05 g/bhp-h; bus; from 1998.
15.5 4.0 1.3 0.1 g/bhp-h; truck; from 1998.

Adapted from Mercedes-Benz AG (1994b).

With respect to the protection of
human health, the monograph states
that the data reviewed supports the
conclusion that inhalation of diesel
exhaust is of concern with respect to
both neoplastic and non-neoplastic
diseases. The monograph found that
diesel exhaust ‘‘is probably carcinogenic
to humans.’’ It also states that the
particulate phase appears to have the
greatest effect on health, and both the
particle core and the associated organic
materials have biological activity,
although the gas-phase components
cannot be disregarded. The monograph
recommends the following actions for
the protection of human health:

(1) Diesel exhaust emissions should
be controlled as part of the overall
control of atmospheric pollution,
particularly in urban environments.

(2) Emissions should be controlled
strictly by regulatory inspections and
prompt remedial actions.

(3) Urgent efforts should be made to
reduce emissions, specifically of
particulates, by changing exhaust train
techniques, engine design, and fuel
consumption.

(4) In the occupational environment,
good work practices should be
encouraged, and adequate ventilation
must be provided to prevent excessive
exposure.

The monograph made no
recommendations as to what constitutes
excessive exposure.

International Agency for Research on
Cancer (IARC)

The carcinogenic risks for human
beings were evaluated by a working
group convened by the International

Agency for Research on Cancer in 1988
(International Agency for Research on
Cancer, 1989b). The conclusions were:

(1) There is sufficient evidence for the
carcinogenicity in experimental animals
of the whole diesel engine exhaust.

(2) There is inadequate evidence for
the carcinogenicity in animals of gas-
phase diesel engine exhaust (with
particles removed).

(3) There is sufficient evidence for the
carcinogenicity in experimental animals
of extracts of diesel engine exhaust
particles.

(4) There is limited evidence for the
carcinogenicity in humans of engine
exhausts (unspecified as from diesel or
gasoline engines).
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Overall IARC Evaluation

Diesel engine exhaust is probably
carcinogenic to humans (Group 2A).

(9) MSHA’s Initiative to Limit Miner
Exposure to Diesel Particulate—a Brief
History of this Rulemaking and Related
Actions. As discussed in part III of this
preamble, by the early 1980’s, the
evidence indicating that exposure to
diesel exhaust might be harmful to
miners, particularly in underground
mines, had started to grow. As a result,
formal agency actions were initiated to
investigate this possibility and to
determine what, if any, actions might be
appropriate. These actions are
summarized here in chronological
sequence, without comment as to the
basis of any action or conclusion.

In 1984, in accordance with the
§ 102(b) of the Mine Act, NIOSH
established a standing Mine Health
Research Advisory Committee to advise
it on matters involving or related to
mine health research. In turn, that group
established a subgroup to determine if:

* * * there is a scientific basis for
developing a recommendation on the use of
diesel equipment in underground mining
operations and defining the limits of current
knowledge, and recommending areas of
research for NIOSH, if any, taking into
account other investigators’ ongoing and
planned research. (49 FR 37174).

In 1985, MSHA established an
Interagency Task Group with the
National Institute for Occupational
Safety and Health (NIOSH) and the
former Bureau of Mines (BOM) to assess
the health and safety implications of the
use of diesel-powered equipment in
underground coal mines. In part, as a
result of the recommendation of the
Task Group, MSHA, in April 1986,
began drafting proposed regulations on
the approval and use of diesel-powered
equipment in underground coal mines.
Also in 1986, the subgroup of the
NIOSH advisory committee studying
this issue summarized the evidence
available at that time as follows:

It is our opinion that although there are
some data suggesting a small excess risk of
adverse health effects associated with
exposure to diesel exhaust, these data are not
compelling enough to exclude diesels from
underground mines. In cases where diesel
equipment is used in mines, controls should
be employed to minimize exposure to diesel
exhaust. (Interagency Task Group Report,
1986).

As noted previously in section 7 of
this part, in discussing MSHA’s diesel
equipment rule, on October 6, 1987,
pursuant to Section 102(c) of the Mine
Act, 30 U.S.C. § 812(c), MSHA
appointed an advisory committee ‘‘to
provide advice on the complex issues

concerning the use of diesel-powered
equipment in underground coal mines.’’
(52 FR 37381). MSHA appointed nine
members to the Advisory Committee. As
required by Section 101(a)(1), MSHA
provided the Advisory Committee with
draft regulations on the approval and
use of diesel-powered equipment in
underground coal mines. The draft
regulations did not include standards
setting specific limitations on diesel
particulate, nor had MSHA at that time
determined that such standards should
be promulgated.

In July 1988, the Advisory Committee
completed its work with the issuance of
a report entitled ‘‘Report of the Mine
Safety and Health Administration
Advisory Committee on Standards and
Regulations for Diesel-Powered
Equipment in Underground Coal
Mines.’’ The Advisory Committee
recommended that MSHA promulgate
standards governing the approval and
use of diesel-powered equipment in
underground coal mines. The Advisory
Committee recommended that MSHA
promulgate standards limiting
underground coal miners’ exposure to
diesel exhaust.

With respect to diesel particulate, the
Advisory Committee recommended that
MSHA ‘‘set in motion a mechanism
whereby a diesel particulate standard
can be set.’’ (MSHA, 1988). In this
regard, the Advisory Committee
determined that because of inadequacies
in the data on the health effects of diesel
particulate matter and inadequacies in
the technology for monitoring the
amount of diesel particulate matter at
that time, it could not recommend that
MSHA promulgate a standard
specifically limiting the level of diesel
particulate matter. (Id. 64–65). Instead,
the Advisory Committee recommended
that MSHA request NIOSH and the
former BOM to prioritize research in the
development of sampling methods and
devices for diesel particulate. The
Advisory Committee also recommended
that MSHA request a study on the
chronic and acute effects of diesel
emissions (Id.). In addition, the
Advisory Committee recommended that
the control of diesel particulate ‘‘be
accomplished through a combination of
measures including fuel requirements,
equipment design, and in-mine controls
such as the ventilation system and
equipment maintenance in conjunction
with undiluted exhaust measurements.’’
The Advisory Committee further
recommended that particulate emissions
‘‘be evaluated in the equipment
approval process and a particulate
emission index reported.’’ (Id. at 9).

In addition, the Advisory Committee
recommended that ‘‘the total respirable

particulate, including diesel particulate,
should not exceed the existing two
milligrams per cubic meter respirable
dust standard.’’ (Id. at 9). Section
202(b)(2) of the Mine Act requires that
coal mine operators maintain the
average concentration of respirable dust
at their mines at or below two
milligrams per cubic meter which
effectively prohibits diesel particulate
matter in excess of two milligrams per
cubic meter, 30 U.S.C. 842(b)(2).

Also in 1988, NIOSH issued a Current
Intelligence Bulletin recommending that
whole diesel exhaust be regarded as a
potential carcinogen and controlled to
the lowest feasible exposure level
(NIOSH, 1988). In its bulletin, NIOSH
concluded that although the excess risk
of cancer in diesel exhaust exposed
workers has not been quantitatively
estimated, it is logical to assume that
reductions in exposure to diesel exhaust
in the workplace would reduce the
excess risk. NIOSH stated that ‘‘[g]iven
what we currently know there is an
urgent need for efforts to be made to
reduce occupational exposures to DEP
[dpm] in mines.’’

Consistent with the Advisory
Committee’s research recommendations,
MSHA, in September 1988, formally
requested NIOSH to perform a risk
assessment for exposure to diesel
particulate. (57 FR 500). MSHA also
requested assistance from NIOSH and
the former BOM in developing sampling
and analytical methodologies for
assessing exposure to diesel particulate
in mining operations. (Id.). In part, as a
result of the Advisory Committee’s
recommendation, MSHA also
participated in studies on diesel
particulate sampling methodologies and
determination of underground
occupational exposure to diesel
particulate. A list of the studies
requested and reports thereof is set forth
in 57 FR 500–501.

On October 4, 1989, MSHA published
a Notice of Proposed Rulemaking on
approval requirements, exposure
monitoring, and safety requirements for
the use of diesel-powered equipment in
underground coal mines. (54 FR 40950).
The proposed rule, among other things,
addressed, and in fact followed, the
Advisory Committee’s recommendation
that MSHA promulgate regulations
requiring the approval of diesel engines
(54 FR 40951), limiting gaseous
pollutants from diesel equipment, (Id.),
establishing ventilation requirements
based on approval plate dilution air
quantities (54 FR 40990), requiring
equipment maintenance (54 FR 40958),
requiring that trained personnel work
on diesel-powered equipment, (54 FR
40995), establishing fuel requirements,
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(Id.), establishing gaseous contaminant
monitoring (54 FR 40989), and requiring
that a particulate index indicating the
quantity of air needed to dilute
particulate emissions from diesel
engines be established. (54 FR 40953).

On January 6, 1992, MSHA published
an Advance Notice of Proposed
Rulemaking (ANPRM) indicating that it
was in the early stages of developing a
rule specifically addressing miners’
exposure to diesel particulate. (57 FR
500). In the ANPRM, MSHA, among
other things, sought comment on
specific reports on diesel particulate
prepared by NIOSH and the former
BOM. (Id.). MSHA also sought comment
on reports on diesel particulate which
were prepared by or in conjunction with
MSHA. (57 FR 501). The ANPRM also
sought comments on the health effects,
technological and economic feasibility,
and provisions which should be
considered for inclusion in a diesel
particulate rule. (57 FR 501). The notice
also identified five specific areas where
the agency was particularly interested in
comments, and about which it asked a
number of detailed questions: (1)
exposure limits, including the basis
therefore; (2) the validity of the NIOSH
risk assessment model and the validity
of various types of studies; (3)
information about non-cancer risks,
non-lung routes of entry, and the
confounding effects of tobacco smoking;
(4) the availability, accuracy and proper
use of sampling and monitoring
methods for diesel particulate; and (5)
the technological and economic
feasibility of various types of controls,
including ventilation, diesel fuel, engine
design, aftertreatment devices, and
maintenance by mechanics with
specialized training. The notice also
solicited specific information from the
mining community on ‘‘the need for a
medical surveillance or screening
program and on the use of respiratory
equipment.’’ (57 FR 500). The comment
period on the ANPRM closed on July 10,
1992.

While MSHA was completing a
‘‘comprehensive analysis of the
comments and any other information
received’’ in response to the ANPRM (57
FR 501), it took several actions to
encourage the mining community to
begin to deal with this problem, and to
provide the knowledge and equipment
needed for this task. As described
earlier in this part, the Agency held
several workshops in 1995, published a
‘‘toolbox’’ of controls, and developed a
spreadsheet template that allows mine
operators to compare the impacts of
various controls on dpm concentrations
in individual mines.

On October 25, 1996, MSHA
published a final rule addressing
approval, exhaust monitoring, and
safety requirements for the use of diesel-
powered equipment in underground
coal mines. (61 FR 55412). The final
rule addresses and in large part is
consistent with the specific
recommendations made by the Advisory
Committee for limiting underground
coal miners’ exposure to diesel exhaust.
(A further summary of this rule is
contained in section 7 of this part).

On February 26, 1997, the United
Mine Workers of America petitioned the
U.S. Court of Appeals for the D.C.
Circuit to issue a writ of mandamus
ordering the Secretary of Labor to
promulgate a rule on diesel particulate.
In Re: International Union, United Mine
Workers of America, D.C. Cir. Ct.
Appeals, No. 97–1109. The matter was
scheduled for oral argument on
September 12, 1997. On September 11,
1997, the Court granted the parties’ joint
motion to continue oral argument and
hold the proceedings in abeyance. The
Court directed the parties to file status
reports or motions to govern future
proceedings at 90-day intervals.
Pursuant to that order, on March 10,
1998, the Secretary filed a status report.

III. Risk Assessment
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Introduction
MSHA has reviewed the scientific

literature to evaluate the potential
health effects of diesel particulate at
occupational exposures encountered in
the mining industry. Based on its review
of the currently available information,
this part of the preamble assesses the
risks associated with those exposures.
Additional material submitted for the
record will be considered by MSHA
before final determinations are made.

Agencies sometimes place risk
assessments in the rulemaking record
and provide only a summary in the
preamble for a proposed rule. MSHA
has decided that, in this case, it is
important to disseminate a discussion of
risk widely throughout the mining
community. Therefore, the full
assessment is being included as part of
the preamble.

The risk assessment begins with a
discussion of dpm exposure levels
observed in the mining industry. This is
followed by a review of information
available to MSHA on health effects that
have been associated with diesel
particulate exposure. Finally, in the
section entitled ‘‘Characterization of
Risk,’’ the Agency considers three
questions that must be addressed for
rulemaking under the Mine Act, and
relates the available information about
risks of dpm exposure at current levels
to the regulatory requirements.

A risk assessment must be technical
enough to present the evidence and
describe the main controversies
surrounding it. At the same time, an
overly technical presentation could
cause stakeholders to lose sight of the
main points. MSHA is guided by the
first principle the National Research
Council established for risk
characterization: that the approach be—

[a] decision driven activity, directed
toward informing choices and solving
problems * * * Oversimplifying the science
or skewing the results through selectivity can
lead to the inappropriate use of scientific
information in risk management decisions,
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5 MSHA has only limited information about
miner exposures in other countries. Based on 223
personal and area samples, average exposures at 21
Canadian noncoal mines were reported to range

from 170 to 1300 µg/m3 (respirable combustible
dust), with maximum measurements ranging from
1020 to 3100 µg/m3 (Gangel and Dainty, 1993).
Among 622 full shift measurements collected since

1989 in German underground noncoal mines, 91
(15%) exceeded 400 µg/m3 (total carbon) (Dahmann
et al., 1996). As explained in Part II of this
preamble, 400 µg/m3 (total carbon) corresponds to
approximately 500 µg/m3 dpm.

but providing full information, if it does not
address key concerns of the intended
audience, can undermine that audience’s
trust in the risk analysis.

MSHA intends this risk assessment to
further the rulemaking process. The
purpose of a proposed rulemaking is to
advise the regulated community of what
information the agency is evaluating,
how the agency believes it should
evaluate that information, and what
tentative conclusions the agency has
drawn. Comments and guidance from
all interested members of the public are
encouraged. The risk assessment
presented here is meant to facilitate
public comment, thus, helping to ensure
that final rulemaking is based on as
complete a record as possible—on both
the evidence itself and the manner in
which it is to be evaluated by the
Agency. Those who want additional
detail are welcome to examine the
materials cited in this part, copies of
which are included in MSHA’s
rulemaking record.

While this rulemaking only covers the
underground coal sector, this risk
assessment was prepared so as to enable
MSHA and to assess the risks
throughout the mining industry.
Accordingly, this information will be of
interest to the entire mining community.

MSHA had this risk assessment
independently peer reviewed. The risk
assessment presented here incorporates
revisions made in accordance with the
reviewers recommendations. The
reviewers stated that:

* * * principles for identifying evidence
and characterizing risk are thoughtfully set
out. The scope of the document is carefully
described, addressing potential concerns
about the scope of coverage. Reference
citations are adequate and up to date. The
document is written in a balanced fashion,
addressing uncertainties and asking for
additional information and comments as
appropriate. (Samet and Burke, Nov. 1997).

III.1. Exposures of U.S. Miners

Information about U.S. miner
exposures comes from published studies
and from additional mine surveys
conducted by MSHA since 1993.5
Previously published studies of U.S.
miner exposure to dpm are: Watts (1989,
1992), Cantrell (1992, 1993), Haney
(1992), and Tomb and Haney (1995).
MSHA has also conducted surveys
subsequent to the period covered in
Tomb and Haney (1995), and the
previously unpublished data from those
surveys are included here. Overall, the
period covered in MSHA’s surveys, on
which this section is based, is late 1988
through mid 1997.

MSHA’s field studies involved
measuring dpm concentrations at a total
of 48 mines: 25 underground metal and
nonmetal (M/NM) mines, 12
underground coal mines, and 11 surface
mining operations (both coal and
M/NM). At all surface mines and all
underground coal mines, dpm
measurements were made using the
size-selective method, based on
gravimetric determination of the amount
of submicrometer dust collected with an
impactor. With two exceptions, dpm
measurements at underground M/NM
mines were made using the RCD method
(with no submicrometer impactor).
Measurements at the two remaining
underground M/NM mines were made
using the size-selective method, as in
coal and surface mines. The various
methods of measuring dpm are
explained in Part II of this preamble.
Weighing errors inherent in the
gravimetric analysis required for both
size-selective and RCD methods become
statistically insignificant at the
relatively high dpm concentrations
observed.

Each underground study typically
included personal dpm exposure

measurements for approximately five
production workers. Also, area samples
were collected in return airways of
underground mines to determine diesel
particulate emission rates. Operational
information such as the amount and
type of equipment, airflow rates, fuel,
and maintenance was also recorded. In
general, MSHA’s studies focused on face
production areas of mines, where the
highest concentrations of dpm could be
expected; but, since some miners do not
spend their time in face areas, studies
were performed in other areas as well,
to get a more complete picture of miner
exposure. Because of potential
interferences from tobacco smoke in
underground M/NM mines, samples
were not collected on or near smokers.

Table III–1 summarizes key results
from MSHA’s studies.

The higher concentrations in
underground mines were typically
found in the haulageways and face areas
where numerous pieces of equipment
were operating, or where insufficient air
was available to ventilate the operation.
In production areas and haulageways of
underground mines where diesel
powered equipment is used, the mean
dpm concentration observed was 755
µg/m3. By contrast, in travelways of
underground mines where diesel
powered equipment is used, the mean
dpm concentration (based on 107
samples not included in Table III–1)
was 307 µg/m3. In surface mines, the
higher concentrations were generally
associated with truck drivers and front-
end loader operators. The mean dpm
concentration observed was less than
200 µg/m3 at all 11 of the surface mines
in which measurements were made.
More information about the dpm
concentrations observed in each sector
is presented in the material that follows.

TABLE III–1.—FULL-DIESEL PARTICULATE MATTER CONCENTRATIONS OBSERVED IN PRODUCTION AREAS AND
HAULAGEWAYS OF 48 DIESELIZED U.S. MINES. INTAKE AND RETURN AREA SAMPLES ARE EXCLUDED.

Mine type Number of sam-
ples

Mean exposure
µg/m3

Exposure range
µg/m3

Surface ....................................................................................................................... 45 88 9–380
Underground Coal ...................................................................................................... 226 644 0–3,650
Underground Metal and Nonmetal ............................................................................. 331 830 10–5,570

III.1.a. Underground Coal Mines
Approximately 170 out of the 971

existing underground coal mines
currently utilize diesel powered
equipment. Of these 170 mines, fewer

than 20 currently use diesel equipment
for face coal haulage. The remaining
mines use diesel equipment for
transportation, materials handling and
other support operations. MSHA

focused its efforts in measuring dpm
concentrations in coal mines on mines
that use diesel powered equipment for
face coal haulage. Twelve mines using
diesel-powered face haulage were
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6 In coal mine E, the average as expressed by the
mean exceeded 1000 µg/m 3, but the median did
not.

sampled. Mines with diesel powered
face haulage were selected because the
face is an area with a high concentration
of vehicles operating at a heavy duty
cycle at the furthest end of the mine’s
ventilation system.

Diesel particulate levels in
underground mines depend on: (1) the
amount, size, and workload of diesel
equipment; (2) the rate of ventilation;
and, (3) the effectiveness of whatever
diesel particulate control technology
may be in place. In the dieselized mines
studied by MSHA, the sections used
either two or three diesel coal haulage
vehicles. In eastern mines the haulage
vehicles were equipped with a nominal

100 horsepower engine. In western
mines the haulage vehicles were
equipped with a nominal 150
horsepower engine. Ventilation rates
ranged from the nameplate requirement,
based on the 100–75–50 percent rule
(Holtz, 1960), to ten times the nameplate
requirement. In most cases, the section
airflow was approximately twice the
name plate requirement. Control
technology involved aftertreatment
filters and fuel. Two types of
aftertreatment filters were used. These
filters included a disposable diesel
emission filter (DDEF) and a Wire Mesh
Filter (WMF). The DDEF is a
commercially available product; the

WMF was developed by and only used
at one mine. Both low sulfur and high
sulfur fuels were used.

Figure III–1 displays the range of
exposure measurements obtained by
MSHA in the field studies it conducted
in underground coal mines. A study
normally consisted of collecting
samples on the continuous miner
operator and ramcar operators for two to
three shifts, along with area samples in
the haulageways. A total of 142 personal
samples and 84 area samples were
collected. No statistically significant
difference was observed in mean dpm
concentration between the personal and
area samples.

In six mines, measurements were
taken both with and without
employment of disposable after
treatment filters, so that a total of
eighteen studies, carried out in twelve
mines, are displayed. Without
employment of after treatment filters,
average observed dpm concentrations

exceeded 500 µg/m 3 in eight of the
twelve mines and exceeded 1000 µg/m 3

in four.6

The highest dpm concentrations
observed at coal mines were collected at
Mine ‘‘G.’’ Eight of these samples were
collected during employment of DDEF’s,
and eight were collected while filters
were not being employed. Without
filters, the mean dpm concentration
observed at Mine ‘‘G’’ was 2052 µg/m3
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7 At M/NM mines C, I, J, and P, the average as
expressed by the mean exceeded 100 µg/m3 but the

median did not. At N/NM mines H and S, the
median exceeded 1000 µg/m3 but the mean did not.

At M/NM mine K, the mean exceeded 500 µg/m3,
but the median did not.

(median = 2100 µg/m3). With disposable
filters, the mean dropped to 1241 µg/m3

(median = 1235 µg/m3).
Filters were employed in three of the

four studies showing median dpm
concentration at or below 200 µg/m3.
After adjusting for outby sources of
dpm, exposures were found to be
reduced by up to 95 percent in mines
using the DDEF and by up to 50 percent
in the mine using the WMF. The higher
dpm concentrations observed at the
mine using the WMF are attributable
partly to the lower section airflow. The
only study without filters showing a
median concentration at or below 200
µg/m3 was conducted in a mine (Mine
‘‘A’’) which had section airflow
approximately ten times the nameplate
requirement. The section airflow at the
mine using the WMF was approximately
the nameplate requirement.

III.1.b. Underground Metal and
Nonmetal Mines. Currently there are
approximately 260 underground M/NM
mines in the United States. Nearly all of
these mines utilize diesel powered
equipment, and twenty-five of those
doing so were sampled by MSHA for
dpm. The M/NM studies typically
included measurements of dpm
exposure for dieselized production
equipment operators (such as truck
drivers, roof bolters, haulage vehicles)
on two to three shifts. A number of area
samples were also collected. None of the
M/NM mines studied were using diesel
particulate afterfilters.

Figure III–2 displays the range of dpm
concentrations measured by MSHA in
the twenty-five underground M/NM
mines studied. A total of 254 personal
samples and 77 area samples were
collected. No statistically significant

difference was observed in mean dpm
concentration between the personal and
area samples. Personal exposures
observed ranged from less than 100 µg/
m3 to more than 3500 µg/m3. With the
exception of Mine ‘‘V’’, personal
exposures were for face workers. Mine
‘‘V’’ did not use dieselized face
equipment.

Average observed dpm concentrations
exceeded 500 µg/m3 in 17 of the 25 M/
NM mines and exceeded 1000 µg/m3 in
12.7 The highest dpm concentrations
observed at M/NM mines were collected
at Mine ‘‘E’’. Based on 16 samples, the
mean dpm concentration observed at
Mine ‘‘E’’ was 2008 µg/m3 (median =
1835 µg/m3). Twenty-five percent of the
dpm measurements at this mine
exceeded 2400 µg/m3. All four of these
were based on personal samples.

As with underground coal mines,
dpm levels in underground M/NM
mines are related to the amount and size

of equipment, to the ventilation rate,
and to the effectiveness of the diesel
particulate control technology

employed. In the dieselized M/NM
mines studied by MSHA, front-end-
loaders were used either to load ore
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onto trucks or to haul and load ore onto
belts. Additional pieces of diesel
powered support equipment, such as
bolters and mantrips, were also used at
the mines. The typical piece of
production equipment was rated at 150
to 350 horsepower. Ventilation rates in
the M/NM mines studied mostly ranged
from 100 to 200 cfm per horsepower of
equipment. In only a few of the mines
surveyed did ventilation exceed 200
cfm/hp. For single-level mines, working
areas were ventilated in series, i.e., the
exhaust air from one area became the
intake for the next working area. For
multi-level mines, each level typically
had a separate fresh air supply. One or
two working areas could be on a level.
Control technology used to reduce
diesel particulate emissions in mines
surveyed included oxidation catalytic

converters and engine maintenance
programs. Both low sulfur and high
sulfur fuel were used; some mines used
aviation grade low sulfur fuel.

III.1.c. Surface Mines. Currently, there
are approximately 12,200 surface
mining operations in the United States.
The total consists of approximately
1,700 coal mines and 10,500 M/NM
mines. Virtually all of these mines
utilize diesel powered equipment.

MSHA conducted diesel particulate
studies at eleven surface mining
operations: eight coal mines and three
M/NM mines. To help select those
surface facilities likely to have
significant dpm concentrations, MSHA
first made a visual examination (based
on blackness of the filter) of surface
mine respirable dust samples collected
during a November 1994 study of
surface coal mines. This preliminary

screening of samples indicated that
higher exposures to diesel particulate
are typically associated with front-end-
loader operators and haulage-truck
operators; accordingly, sampling
focused on these operations. A total of
45 samples were collected.

Figure III–3 displays the range of dpm
concentrations measured at the eleven
surface mines. The average dpm
concentration observed was less than
200 µg/m3 at all mines sampled. The
maximum dpm concentration observed
was less than or equal to 200 µg/m3 in
8 of the 11 mines (73%). The surface
mine studies indicate that even when
sampling is performed at the areas of
surface mines believed most likely to
have high exposures, dpm
concentrations are generally less than
200 µg/m3.

III.1.d. Comparison of Miner
Exposures to Exposures of Other
Groups. Occupational exposure to diesel
particulate primarily originates from
industrial operations employing
equipment powered with diesel engines.
Diesel engines are used to power ships,
locomotives, heavy duty trucks, heavy
machinery, as well as a small number of

light-duty passenger cars and trucks.
NIOSH estimates that approximately
1.35 million workers are occupationally
exposed to the combustion products of
diesel fuel in approximately 80,000
workplaces in the United States.
Workers who are likely to be exposed to
diesel emissions include: mine workers;
bridge and tunnel workers; railroad

workers; loading dock workers; truck
drivers; fork-lift drivers; farm workers;
and, auto, truck, and bus maintenance
garage workers (NIOSH, 1988). Besides
miners, groups for which occupational
exposures have been reported and
health effects have been studied include
dock workers, truck drivers, and
railroad workers.
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As estimated by geometric mean,
median occupational exposures
reported for dock workers either
operating or otherwise exposed to diesel
fork lift trucks have ranged from 23 to
55 µg/m3, as measured by
submicrometer elemental carbon
(NIOSH, 1990; Zaebst et al., 1991).
Watts (1995) states that ‘‘elemental
carbon generally accounts for about
40% to 60% of diesel particulate mass.’’
Assuming that, on average, the
submicrometer elemental carbon
constituted approximately 50% by mass
of the whole diesel particulate, this
would correspond to a range of 46 to
110 µg/m3 in median dpm
concentrations at various docks.

In a study of dpm exposures in the
trucking industry, Zaebst et al. (1991)
reported geometric mean concentrations

of submicrometer carbon ranging from 2
to 7 µg/m 3 for drivers to 5 to 28 µg/m 3

for mechanics, depending on weather
conditions. Again assuming that, on
average, the mass concentration of
whole diesel particulate is about twice
that of submicrometer elemental carbon,
the corresponding range of median dpm
concentrations would be 4 to 56 µg/m 3.

Exposures of railroad workers to dpm
were estimated by Woskie et al. (1988)
and Schenker et al. (1990). As measured
by total respirable particulate matter
other than cigarette smoke, Woskie et al.
reported geometric mean concentrations
for various occupational categories of
exposed railroad workers ranging from
49 to 191 µg/m3.

Figure III–4 shows the range of
median dpm concentrations observed
for mine workers at different mines

compared to the range of median
concentrations estimated for dock
workers (including forklift drivers at
loading docks), truck drivers and
mechanics, railroad workers, and urban
ambient air. The range for ambient air,
1 to 10 µg/m3, was obtained from Cass
and Gray (1995). For dock workers,
truck drivers, and railroad workers, the
estimated range of median exposures is
respectively 46 to 110 µg/m3, 4 to 56 µg/
m3, and 49 to 191 µg/m3. The range of
medians observed at different
underground coal mines is 55 to 2100
µg/m3, with filters employed at mines
showing the lower concentrations. For
underground M/NM mines, the
corresponding range is 68 to 1835 µg/
m3, and for surface mines it is 19 to 160
µg/m3.

As shown in Figure III–4, some
miners are exposed to far higher
concentrations of dpm than are any
other populations for which data have
been collected. Indeed, median dpm

concentrations observed in some
underground mines are up to 200 times
as high as average environmental
exposures in the most heavily polluted
urban areas, and up to 10 times as high

as median exposures estimated for the
most heavily exposed workers in other
occupational groups.
III.2. Health Effects Associated with
DPM Exposures.
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This section reviews all the various
health effects (of which MSHA is aware)
that may be associated with exposure to
diesel particulate. The review is divided
into three main sections: acute effects,
such as diminished pulmonary function
and eye irritation; chronic effects, such
as lung cancer; and mechanisms of
toxicity. Prior to that review, however,
the relevance of certain types of
information will be considered. This
discussion will address the relevance of
health effects observed in animals,
health effects that are reversible, and
health effects associated with fine
particulate matter in the ambient air.

III.2.a. Relevancy Considerations.

III.2.a.i. Relevance of Health Effects
Observed in Animals. Since the lungs of
different species may react differently to
particle inhalation, it is necessary to
treat the results of animal studies with
some caution. Evidence from animal
studies can nevertheless be valuable,
and those respondents to MSHA’s
ANPRM who addressed this question

urged consideration of all animal
studies related to the health effects of
diesel exhaust.

Unlike humans, laboratory animals
are bred to be homogeneous and can be
randomly selected for either non-
exposure or exposure to varying levels
of a potentially toxic agent. This permits
setting up experimental and control
groups of animals that do not differ
biologically prior to exposure. The
consequences of exposure can then be
determined by comparing responses in
the experimental and control groups.
After a prescribed duration of deliberate
exposure, laboratory animals can also be
sacrificed, dissected, and examined.
This can contribute to an understanding
of mechanisms by which inhaled
particles may exert their effects on
health. For this reason, discussion of the
animal evidence is placed in the section
entitled ‘‘Mechanisms of Toxicity’’
below.

Animal evidence also can help isolate
the cause of adverse health effects
observed among humans exposed to a

variety of potentially hazardous
substances. If, for example, the
epidemiological data is unable to
distinguish between several possible
causes of increased risk of disease in a
certain population, then controlled
animal studies may provide evidence
useful in suggesting the most likely
explanation—and provide that
information years in advance of
definitive evidence from human
observations.

Furthermore, results from animal
studies may also serve as a check on the
credibility of observations from
epidemiological studies of human
populations. If a particular health effect
is observed in animals under controlled
laboratory conditions, this tends to
corroborate observations of similar
effects in humans.

Accordingly, MSHA believes that
judicious use of evidence from animal
studies is appropriate. The extent to
which MSHA relies upon such evidence
to draw specific conclusions will be
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discussed below in connection with
those conclusions.

III.2.a.ii. Relevance of Health Effects
That Are Reversible. Some reported
health effects associated with dpm are
apparently reversible—i.e., if the worker
is moved away from the source for a few
days, the health problem goes away. A
good example is eye irritation.

In response to the ANPRM, questions
were raised as to whether so-called
‘‘reversible’’ effects can constitute a
‘‘material’’ impairment. For example,
one commenter argued that ‘‘it is totally
inappropriate for the agency to set
permissible exposure limits based on
temporary, reversible sensory irritation’’
because such effects cannot be a
‘‘material’’ impairment of health or
functional capacity within the
definition of the Mine Act (American
Mining Congress, 87–0–21, Executive
Summary, p. 1, and Appendix A).

MSHA does not agree with this
categorical view. Although the
legislative history of the Mine Act is
silent concerning the meaning of the
term ‘‘material impairment of health or
functional capacity,’’ and the issue has
not been litigated within the context of
the Mine Act, the statutory language
about risk in the Mine Act is similar to
that under the OSH Act. A similar
argument was dispositively resolved in
favor of the Occupational Safety and
Health Administration (OSHA) by the
11th Circuit Court of Appeals in
AFLCIO v. OSHA, 965 F.2d 962, 974
(1992) (popularly known as the ‘‘PEL’s’’
decision).

In that case, OSHA proposed new
limits on 428 diverse substances. It
grouped these into 18 categories based
upon the primary health effects of those
substances: e.g., neuropathic effects,
sensory irritation, and cancer. (54 FR
2402). Challenges to this rule included
the assertion that a ‘‘sensory irritation’’
was not a ‘‘material impairment of
health or functional capacity’’ which
could be regulated under the OSH Act.
Industry petitioners argued that since
irritant effects are transient in nature,
they did not constitute a ‘‘material
impairment.’’ The Court of Appeals
decisively rejected this argument.

The court noted OSHA’s position that
effects such as stinging, itching and
burning of the eyes, tearing, wheezing,
and other types of sensory irritation can
cause severe discomfort and be
seriously disabling in some cases.
Moreover, there was evidence that
workers exposed to these sensory
irritants could be distracted as a result
of their symptoms, thereby endangering
other workers and increasing the risk of
accidents. (Id. at 974). This evidence
included information from NIOSH about

the general consequences of sensory
irritants on job performance, as well as
testimony by commenters on the
proposed rule supporting the view that
such health effects should be regarded
as material health impairments. While
acknowledging that ‘‘irritation’’ covers a
spectrum of effects, some of which can
be trivial, OSHA had concluded that the
health effects associated with exposure
to these substances warranted action—
to ensure timely medical treatment,
reduce the risks from increased
absorption, and avoid a decreased
resistance to infection (Id. at 975).
Finding OSHA’s evaluation adequate,
the Court of Appeals rejected
petitioners’ argument and stated the
following:

We interpret this explanation as indicating
that OSHA finds that although minor
irritation may not be a material impairment,
there is a level at which such irritation
becomes so severe that employee health and
job performance are seriously threatened,
even though those effects may be transitory.
We find this explanation adequate. OSHA is
not required to state with scientific certainty
or precision the exact point at which each
type of sensory or physical irritation becomes
a material impairment. Moreover, section
6(b)(5) of the Act charges OSHA with
addressing all forms of ‘‘material impairment
of health or functional capacity,’’ and not
exclusively ‘‘death or serious physical harm’’
or ‘‘grave danger’’ from exposure to toxic
substances. See 29 U.S.C. 654(a)(1), 655(c).
[Id. at 974.]

III.2.a.iii. Relevance of Health Effects
Associated with Fine Particulate Matter
in Ambient Air. There have been many
studies in recent years designed to
determine whether the mix of
particulate matter in ambient air is
harmful to health. The evidence linking
particulates in air pollution to health
problems has long been compelling
enough to warrant direction from the
Congress to limit the concentration of
such particulates (see part II, section 5
of this preamble). In recent years, the
evidence of harmful effects due to
airborne particulates has increased, and,
moreover, has suggested that ‘‘fine’’
particulates (i.e., particles less than 2.5
µm in diameter) are more strongly
associated than ‘‘coarse’’ particulates
(i.e., respirable particles greater than 2.5
µm in diameter) with the adverse health
effects observed (EPA, 1996).

MSHA recognizes that there are two
difficulties involved in utilizing the
evidence from such studies in assessing
risks to miners from occupational dpm
exposures. First, although dpm is a fine
particulate, ambient air also contains
fine particulates other than dpm.
Therefore, health effects associated with
exposures to fine particulate matter in
air pollution studies are not associated

specifically with exposures to dpm or
any other one kind of fine particulate
matter. Second, observations of adverse
health effects in segments of the general
population do not necessarily apply to
the population of miners. Since, due to
age and selection factors, the health of
miners differs from that of the public as
a whole, it is possible that fine particles
might not affect miners, as a group, to
the same extent as the general
population.

Nevertheless, there are compelling
reasons to consider this body of
evidence. Since dpm is a type of
respirable particle, information about
health effects associated with exposures
to respirable particles in general, and
especially to fine particulate matter, is
certainly relevant, even if difficult to
apply directly to dpm exposures.
Adverse health effects in the general
population have been observed at
ambient atmospheric particulate
concentrations well below those studied
in occupational settings. Furthermore,
there is extensive literature showing
that occupational dust exposures
contribute to Chronic Obstructive
Pulmonary Diseases (COPD), thereby
compromising the pulmonary reserve of
some miners, and that miners
experience COPD at a significantly
higher rate than the general population
(Becklake 1989, 1992; Oxman 1993;
NIOSH 1995). This would appear to
place affected miners in a
subpopulation specifically identified as
susceptible to the adverse health effects
of respirable particle pollution (EPA,
1996). The Mine Act requires standards
that ‘‘* * * most adequately assure on
the basis of the best available evidence
that no miner suffer material
impairment of health or functional
capacity * * *’’ (Section 101(a)(6),
emphasis added).

In sum, MSHA believes it would be a
serious omission to ignore the body of
evidence from air pollution studies and
the Agency is, therefore, taking that
evidence into account. The Agency
would, however, welcome additional
scientific information and analysis on
ways of applying this body of evidence
to miners experiencing acute and/or
chronic dpm exposures. MSHA is
especially interested in receiving
information on whether the elevated
prevalence of COPD among miners
makes them, as a group, highly
susceptible to the harmful effects of fine
particulate air pollution, including dpm.

III.2.b. Acute Health Effects
Information relating to the acute

health effects of dpm includes anecdotal
reports of symptoms experienced by
exposed miners, studies based on
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exposures to diesel emissions, and
studies based on exposures to
particulate matter in the ambient air.
These will be discussed in turn.

III.2.b.i. Symptoms Reported by
Exposed Miners. Miners working in
mines with diesel equipment have long
reported adverse effects after exposure
to diesel exhaust. For example, at the
workshops on dpm conducted in 1995,
a miner reported headaches and nausea
among several operators after short
periods of exposure (dpm Workshop;
Mt. Vernon, IL, 1995). Another miner
reported that the smoke from equipment
using improper fuel or not well
maintained is an irritant to nose and
throat and impairs vision. ‘‘We’ve had
people sick time and time again * * *
at times we’ve had to use oxygen for
people to get them to come back around
to where they can feel normal again.’’
(dpm Workshop; Beckley, WV, 1995).
Other miners (dpm Workshops; Beckley,
WV, 1995; Salt Lake City, UT, 1995),
reported similar symptoms in the
various mines where they worked.

Kahn et al. (1988) conducted a study
of the prevalence and seriousness of
such complaints, based on United Mine
Workers of America records and
subsequent interviews with the miners
involved. The review involved reports
at five underground coal mines in Utah
and Colorado between 1974 and 1985.
Of the 13 miners reporting symptoms:
12 reported mucous membrane
irritation, headache and light-headiness;
eight reported nausea; four reported
heartburn; three reported vomiting and
weakness, numbness, and tingling in
extremities; two reported chest
tightness; and two reported wheezing
(although one of these complained of
recurrent wheezing without exposure).
All of these incidents were severe
enough to result in lost work time due
to the symptoms (which subsided
within 24 to 48 hours).

MSHA welcomes additional
information about such effects including
information from medical personnel
who have treated miners and
information on work time lost, together
with information about the exposures of
miners for whom such effects have been
observed. The Agency would be
especially interested in comparisons of
effects observed in workers subjected to
filtered exhaust as compared to those
subjected to unfiltered exhaust.

III.2.b.ii. Studies Based on Exposures
to Diesel Emissions. Several scientific
studies have been conducted to
investigate acute effects of exposure to
diesel emissions.

In a clinical study (Battigelli, 1965),
volunteers were exposed to different
levels of diesel exhaust and then the

degree of eye irritation was measured.
Exposure for ten minutes to diesel
exhaust produced ‘‘intolerable’’
irritation in some subjects while the
average irritation score was midway
between ‘‘some’’ irritation and a
‘‘conspicuous but tolerable’’ irritation
level. Cutting the exposure by 50%
significantly reduced the irritation.

In a study of underground iron ore
miners exposed to diesel emissions,
Jr̈gensen and Svensson (1970), found no
difference in spirometry measurements
taken before and after a work shift.
Similarly, Ames et al. (1982), in a study
of coal miners exposed to diesel
emissions, detected no statistically
significant relationship between
exposure and pulmonary function.
However, the authors noted that the lack
of a positive result might be due to the
low concentrations of diesel emissions
involved.

Gamble et al. (1978) did observe
decreases in pulmonary function over a
single shift in salt miners exposed to
diesel emissions. Pulmonary function
appeared to deteriorate in relation to the
concentration of diesel exhaust, as
indicated by NO2; but this effect was
confounded by the presence of NO2 due
to the use of explosives.

Gamble et al. (1987a) assessed
response to diesel exposure among 232
bus garage workers by means of a
questionnaire and before- and after-shift
spirometry. No significant relationship
was detected between diesel exposure
and change in pulmonary function.
However, after adjusting for age and
smoking status, a significantly elevated
prevalence of reported symptoms was
found in the high-exposure group. The
strongest associations with exposure
were found for eye irritation, labored
breathing, chest tightness, and wheeze.
The questionnaire was also used to
compare various acute symptoms
reported by the garage workers and a
similar population of workers at a lead
acid battery plant who were not exposed
to diesel fumes. The prevalence of work-
related eye irritations, headaches,
difficult or labored breathing, nausea,
and wheeze was significantly higher in
the diesel bus garage workers, but the
prevalence of work-related sneezing was
significantly lower.

Ulfvarson et al. (1987) studied effects
over a single shift on 47 stevedores
exposed to dpm at particle
concentrations ranging from 130 µg/m33
to 1000 µg/m3. A statistically significant
loss of pulmonary function was
observed, with recovery after 3 days of
no occupational exposure.

To investigate whether removal of the
particles from diesel exhaust might
reduce the ‘‘acute irritative effect on the

lungs’’ observed in their earlier study,
Ulfvarson and Alexandersson (1990)
compared pulmonary effects in a group
of 24 stevedores exposed to unfiltered
diesel exhaust to a group of 18
stevedores exposed to filtered exhaust,
and to a control group of 17
occupationally unexposed workers.
Workers in all three groups were
nonsmokers and had normal spirometry
values, adjusted for sex, age, and height,
prior to the experimental workshift.

In addition to confirming the earlier
observation of significantly reduced
pulmonary function after a single shift
of occupational exposure, the study
found that the stevedores in the group
exposed only to filtered exhaust had 50–
60% less of a decline in forced vital
capacity (FVC) than did those
stevedores who worked with unfiltered
equipment. Similar results were
observed for a subgroup of six
stevedores who were exposed to filtered
exhaust on one shift and unfiltered
exhaust on another. No loss of
pulmonary function was observed for
the unexposed control group. The
authors suggested that these results
‘‘support the idea that the irritative
effects of diesel exhausts to the lungs
[sic] is the result of an interaction
between particles and gaseous
components and not of the gaseous
components alone.’’ They concluded
that ‘‘* * * it should be a useful
practice to filter off particles from diesel
exhausts in work places even if
potentially irritant gases remain in the
emissions.’’

Rudell et al., (1996) carried out a
series of double-blind experiments on
12 healthy, non-smoking subjects to
investigate whether a particle trap on
the tailpipe of an idling diesel engine
would reduce acute effects of diesel
exhaust, compared with exposure to
unfiltered exhaust. Symptoms
associated with exposure included
headache, dizziness, nausea, tiredness,
tightness of chest, coughing, and
difficulty in breathing, but the most
prominent were found to be irritation of
the eyes and nose, and a sensation of
unpleasant smell. Among the various
pulmonary function tests performed,
exposure was found to result in
significant changes only as measured by
increased airway resistance and specific
airway resistance. The ceramic wall
flow particle trap reduced the number of
particles by 46 percent, but resulted in
no significant attenuation of symptoms
or lung function effects. The authors
concluded that diluted diesel exhaust
caused increased symptoms of the eyes
and nose, unpleasant smell, and
bronchoconstriction, but that the 46
percent reduction in median particle



17530 Federal Register / Vol. 63, No. 68 / Thursday, April 9, 1998 / Proposed Rules

number concentration observed was not
sufficient to protect against these effects
in the populations studied.

Wade and Newman (1993)
documented three cases in which
railroad workers developed persistent
asthma following exposure to diesel
emissions while riding immediately
behind the lead engines of trains having
no caboose. None of these workers were
smokers or had any prior history of
asthma or other respiratory disease.
Although this is the only published
report MSHA knows of directly relating
exposure to diesel emissions with the
development of asthma, there have been
a number of recent studies indicating
that dpm exposure can induce bronchial
inflammation and respiratory
immunological allergic responses in
humans. These are reviewed in Peterson
and Saxon (1996) and Diaz-Sanchez
(1997).

III.2.b.iii. Studies Based on Exposures
to Particulate Matter in Ambient Air. As
early as the 1930’s, as a result of an
incident in Belgium’s industrial Meuse
Valley, it was known that large
increases in particulate air pollution,
created by winter weather inversions,
could be associated with large
simultaneous increases in mortality and
morbidity. More than 60 persons died
from this incident, and several hundred
suffered respiratory problems. The
mortality rate during the episode was
more than ten times higher than normal,
and it was estimated that 3,179 sudden
deaths would occur if a similar incident
occurred in London. Although no
measurements of pollutants in the
ambient air during the episode are
available, high PM levels were
obviously present (EPA, 1996).

A significant elevation in particulate
matter (along with SO2 and its oxidation
products) was measured during a 1948
incident in Donora, PA. Of the Donora
population, 42.7 percent experienced
some adverse health effect, mainly due
to irritation of the respiratory tract.
Twelve percent of the population
reported difficulty in breathing, with a
steep rise in frequency as age progressed
to 55 years (Schrenk, 1949).

Approximately as projected by Firket
(1931), an estimated 4,000 deaths
occurred in response to a 1952 episode
of extreme air pollution in London. The
nature of these deaths is unknown, but
there is clear evidence that bronchial
irritation, dyspnea, bronchospasm, and,
in some cases, cyanosis occurred with
unusual prevalence (Martin, 1964).

These three episodes ‘‘left little doubt
about causality regarding the induction
of serious health effects by very high
concentrations of particle-laden air
pollutant mixtures’’ and stimulated

additional research to characterize
exposure-response relationships (EPA,
1996). Based on several analyses of the
1952 London data, along with several
additional acute exposure mortality
analyses of London data covering later
time periods, the U.S. Environmental
Protection Agency (EPA) concluded that
increased risk of mortality is associated
with exposure to particulate and SO2

levels in the range of 500–1000 µg/m3.
The EPA also concluded that relatively
small, but statistically significant
increases in mortality risk exist at
particulate levels below 500 µg/m3, with
no indications of any specific threshold
level yet indicated at lower
concentrations (EPA, 1986).

Subsequently, between 1986 and
1996, increasingly sophisticated
particulate measurements and statistical
techniques have enabled investigators to
address these questions more
quantitatively. The studies on acute
effects carried out since 1986 are
reviewed in the 1996 EPA Air Quality
Criteria for Particulate Matter, which
forms the basis for the discussion below
(EPA, 1996).

At least 21 studies have been
conducted that evaluate associations
between acute mortality and morbidity
effects and various measures of fine
particulate levels in the ambient air.
These studies are identified in Tables
III–2 and III–3. Table III–2 lists 11
studies that measured primarily fine
particulate matter using filter-based
optical techniques and, therefore,
provide mainly qualitative support for
associating observed effects with fine
particles. Table III–3 lists quantitative
results from 10 studies that reported
gravimetric measurements of either the
fine particulate fraction or of
components, such as sulfates, that serve
as indicators.

A total of 38 studies examining
relationships between short-term
particulate levels and increased
mortality, including nine with fine
particulate measurements, were
published between 1988 and 1996 (EPA,
1996). Most of these found statistically
significant positive associations. Daily
or several-day elevations of particulate
concentrations, at average levels as low
as 18–58 µg/m3, were associated with
increased mortality, with stronger
relationships observed in those with
preexisting respiratory and
cardiovascular disease. Overall, these
studies suggest that an increase of 50 µg/
m3 in the 24-hour average of PM10 is
associated with a 2.5 to 5-percent
increase in the risk of mortality in the
general population. Based on Schwartz
et al. (1996), the relative risk of
mortality in the general population

increased by 2.6 to 5.5 percent per 25
µg/m3 of fine particulate (PM2.5) (EPA,
1996).

A total of 22 studies were published
on associations between short-term
particulate levels and hospital
admissions, outpatient visits, and
emergency room visits for respiratory
disease, Chronic Obstructive Pulmonary
Disease (COPD), pneumonia, and heart
disease (EPA, 1996). Fifteen of these
studies were focussed on the elderly. Of
the seven that dealt with all ages (or in
one case, persons less than 65 years
old), all showed positive results. All of
the five studies relating fine particulate
measurements to increased
hospitalization, listed in Tables III–2
and III–3, dealt with general age
populations and showed statistically
significant associations. The estimated
increase in risk ranges from 3 to 16
percent per 25 µg/m3 of fine particulate.
Overall, these studies are indicative of
acute morbidity effects being related to
fine particulate matter and support the
mortality findings.

Most of the 14 published quantitative
studies on ambient particulate
exposures and acute respiratory
symptoms were restricted to children
(EPA, 1996). Although they generally
showed positive associations, and may
be of considerable biological relevance,
evidence of toxicity in children is not
necessarily applicable to adults. The
few studies on adults have not produced
statistically significant evidence of a
relationship.

Fourteen studies since 1982 have
investigated associations between
ambient particulate levels and loss of
pulmonary function (EPA, 1996). In
general, these studies suggest a short
term effect, especially in symptomatic
groups such as asthmatics, but most
were carried out on children only. In a
study of adults with mild COPD, Pope
and Kanner (1993) found a 29±10 ml
decrease in 1-second Forced Expiratory
Volume (FEV1) per 50 µg/m3 increase in
PM10, which is similar in magnitude to
the change generally observed in the
studies on children. In another study of
adults, with PM10 ranging from 4 to 137
µg/m3, Dusseldorp et al. (1995) found 45
and 77 ml/sec decreases, respectively,
for evening and morning Peak
Expiratory Flow Rate (PEFR) per 50 µg/
m3 increase in PM10 (EPA, 1996). In the
only study carried out on adults that
specifically measured fine particulate
(PM2.5), Perry et al. (1983) did not detect
any association of exposure with loss of
pulmonary function. This study,
however, was conducted on only 24
adults (all asthmatics) exposed at
relatively low concentrations of PM2.5
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and, therefore, had very little power to
detect any such association.

III.2.c. Chronic Health Effects
During the 1995 dpm workshops,

miners reported observable adverse
health effects among those who have
worked a long time in dieselized mines.
For example, a miner (dpm Workshop;
Salt Lake City, UT, 1995), stated that
miners who work with diesel ‘‘have spit
up black stuff every night, big black—
what they call black (expletive)
***[they] have the congestion every
night*** the 60-year-old man working
there 40 years.’’ Scientific investigation
of the chronic health effects of dpm
exposure includes studies based
specifically on exposures to diesel
emissions and studies based more
generally on exposures to fine
particulate matter in the ambient air.
Only the evidence from human studies
will be addressed in this section. Data
from genotoxicology studies and studies
on laboratory animals will be discussed
later, in the section on potential
mechanisms of toxicity.

III.2.c.i. Studies Based on Exposures
to Diesel Emissions. The discussion will
summarize the epidemiological
literature on chronic effects other than
cancer, and then concentrate on the
epidemiology of cancer in workers
exposed to dpm.

III.2.c.i.A. Chronic Effects Other than
Cancer. There have been a number of
epidemiological studies that
investigated relationships between
diesel exposure and the risk of
developing persistent respiratory
symptoms, (i.e., chronic cough, chronic
phlegm, and breathlessness), or
measurable loss in lung function. Three
studies involved coal miners (Reger et
al., 1982; Ames et al., 1984; Jacobson et
al., 1988); four studies involved metal
and nonmetal miners (Jörgenson &
Svensson, 1970; Attfield, 1979; Attfield
et al., 1982; Gamble et al., 1983). Three
studies involved other groups of
workers—railroad workers (Battigelli et
al., 1964), bus garage workers (Gamble
et al., 1987), and stevedores (Purdham et
al., 1987).

Reger et al. (1982) examined the
prevalence of respiratory symptoms and
the level of pulmonary function among
more than 1,600 underground and
surface coal miners, comparing results
for workers (matched for smoking
status, age, height, and years worked
underground) at diesel and non-diesel
mines. Those working at underground
dieselized mines showed some
increased respiratory symptoms and
reduced lung function, but a similar
pattern was found in surface miners
who presumably would have

experienced less diesel exposure.
Miners in the dieselized mines,
however, had worked underground for
less than 5 years on average.

In a study of 1,118 coal miners, Ames
et al. (1984) did not detect any pattern
of chronic respiratory effects associated
with exposure to diesel emissions. The
analysis, however, took no account of
baseline differences in lung function or
symptom prevalence, and the authors
noted a low level of exposure to diesel-
exhaust contaminants in the exposed
population.

In a cohort of 19,901 coal miners
investigated over a 5-year period,
Jacobsen et al. (1988) found increased
work absence due to self-reported chest
illness in underground workers exposed
to diesel exhaust, as compared to
surface workers, but found no
correlation with their estimated level of
exposure.

Jörgenson & Svensson (1970) found
higher rates of chronic productive
bronchitis, for both smokers and
nonsmokers, among underground iron
ore miners exposed to diesel exhaust as
compared to surface workers at the same
mine. No significant difference was
found in spirometry results.

Using questionnaires collected from
4,924 miners at 21 metal and nonmetal
mines, Attfield (1979) evaluated the
effects of exposure to silica dust and
diesel exhaust and obtained
inconclusive results with respect to
diesel exposure. For both smokers and
non-smokers, miners occupationally
exposed to diesel for five or more years
showed an elevated prevalence of
persistent cough, persistent phlegm, and
shortness of breath, as compared to
miners exposed for less than five years,
but the differences were not statistically
significant. Four quantitative indicators
of diesel use failed to show consistent
trends with symptoms and lung
function.

Attfield et al. (1982) reported on a
medical surveillance study of 630 white
male miners at 6 potash mines. No
relationships were found between
measures of diesel use or exposure and
various health indices, based on self-
reported respiratory symptoms, chest
radiographs, and spirometry.

In a study of salt miners, Gamble et
al. (1983) observed some elevation in
cough, phlegm, and dyspnea associated
with mines ranked according to level of
diesel exhaust exposure. No association
between respiratory symptoms and
estimated cumulative diesel exposure
was found after adjusting for differences
among mines. However, since the mines
varied widely with respect to diesel
exposure levels, this adjustment may
have masked a relationship.

Battigelli et al. (1964) compared
pulmonary function and complaints of
respiratory symptoms in 210 railroad
repair shop employees, exposed to
diesel for an average of 10 years, to a
control group of 154 unexposed railroad
workers. Respiratory symptoms were
less prevalent in the exposed group, and
there was no difference in pulmonary
function; but no adjustment was made
for differences in smoking habits.

In a study of workers at four diesel
bus garages in two cities, Gamble et al.
(1987b) investigated relationships
between tenure (as a surrogate for
cumulative exposure) and respiratory
symptoms, chest radiographs, and
pulmonary function. The study
population was also compared to an
unexposed control group of workers
with similar socioeconomic background.

After indirect adjustment for age, race,
and smoking, the exposed workers
showed an increased prevalence of
cough, phlegm, and wheezing, but no
association was found with tenure. Age-
and height-adjusted pulmonary function
was found to decline with duration of
exposure, but was elevated on average,
as compared to the control group.

The number of positive radiographs
was too small to support any
conclusions. The authors concluded
that the exposed workers may have
experienced some chronic respiratory
effects.

Purdham et al. (1987) compared
baseline pulmonary function and
respiratory symptoms in 17 exposed
stevedores to a control group of 11 port
office workers. After adjustment for
smoking, there was no statistically
significant difference in self-reported
respiratory symptoms between the two
groups. However, after adjustment for
smoking, age, and height, exposed
workers showed lower baseline
pulmonary function, consistent with an
obstructive ventilatory defect, as
compared to both the control group and
the general metropolitan population.

In a recent review of these studies,
Cohen and Higgins (1995) concluded
that they did not provide strong or
consistent evidence for chronic,
nonmalignant respiratory effects
associated with occupational exposure
to diesel exhaust. These reviewers
stated, however, that ‘‘several studies
are suggestive of such effects * * *
particularly when viewed in the context
of possible biases in study design and
analysis.’’ MSHA agrees that the studies
are inconclusive but suggestive of
possible effects.

III.2.c.i.B. Cancer. Because diesel
exhaust has long been known to contain
traces of carcinogenic compounds (e.g.,
benzene in the gaseous fraction and



17532 Federal Register / Vol. 63, No. 68 / Thursday, April 9, 1998 / Proposed Rules

8 For simplicity, the epidemiological studies
considered here are placed into two broad
categories. A cohort study compares the health of
persons having different exposures, diets, etc. A
case-control study starts with two defined groups
that differ in terms of their health and compares
their exposure characteristics.

9 A statistically significant result is a result
unlikely to have arisen by chance in the group, or
statistical sample, of persons being studie. An
association arising by chance would have no
predictive value for workers outside the sample.
Failure to achieve statistical significance in an
individual study can arise because of inherent
limitations in the study, such as a small number of
subjects in the sample or a short period of
observation. Therefore, the lack of statistical
significance in an individual study does not
demonstrate that the results of that study were due
merely to chance—only that the study (viewed in
isolation) is inconclusive.

benzopyrene and nitropyrene in the
dpm fraction), a great deal of research
has been conducted to determine if
occupational exposure to diesel exhaust
actually results in an increased risk of
cancer. Evidence that exposure to dpm
increases the risk of developing cancer
comes from three kinds of studies:
human studies, genotoxicological
studies, and animal studies. MSHA
places the most weight on evidence
from the human epidemiological studies
and views the genotoxicological and
animal studies as lending support to the
epidemiological evidence.

In the epidemiological studies, it is
generally impossible to disassociate
exposure to dpm from exposure to the
gasses and vapors that form the
remainder of whole diesel exhaust.
However, the animal evidence shows no
significant increase in the risk of lung
cancer from exposure to the gaseous
fraction alone (Heinrich et al., 1986;
Iwai et al., 1986; Brightwell et al., 1986).
Therefore, dpm, rather than the gaseous
fraction of diesel exhaust, is assumed to
be the agent associated with an excess
risk of lung cancer.

III.2.c.i.B.i. Lung Cancer. Beginning in
1957, at least 43 epidemiological studies
have been published examining
relationships between diesel exhaust
exposure and the prevalence of lung
cancer. The most recent published
reviews of these studies are by
Mauderly (1992), Cohen and Higgins
(1995), Stöber and Abel (1996), Morgan
et al. (1997), and Dawson et al. (1998).
In addition, in response to the ANPRM,
several commenters provided MSHA
with their own reviews. Two
comprehensive statistical ‘‘meta-
analyses’’ of the epidemiological
literature are also available: Lipsett and
Alexeeff (1998) and Bhatia et al. (1998).
These meta-analyses, which analyze and
combine results from the various
epidemiological studies, both suggest a
statistically significant increase of 30 to
40 percent in the risk of lung cancer,
attributable to occupational dpm
exposure. The studies themselves, along
with MSHA’s comments on each study,
are summarized in Tables III–4 (24
cohort studies) and III–5 (19 case-
control studies).8 Presence or absence of
an adjustment for smoking habits is
highlighted, and adjustments for other
potentially confounding factors are
indicated when applicable.

Some degree of association between
occupational dpm exposure and an
excess risk of lung cancer was observed
in 38 of the 43 studies reviewed by
MSHA: 18 of the 19 case-control studies
and 20 of the 24 cohort studies.
However, the 38 studies reporting a
positive association vary considerably
in the strength of evidence they present.
As shown in Tables III–4 and III–5,
statistically significant results were
reported in 24 of the 43 studies: 10 of
the 18 positive case-control studies and
14 of the 20 positive cohort studies.9 In
six of the 20 cohort studies and nine of
the 18 case-control studies showing a
positive association, the association
observed was not statistically
significant.

Because workers tend to be healthier
than non-workers, the incidence of
disease found among workers exposed
to a toxic substance may be lower than
the rate prevailing in the general
population, but higher than the rate
occurring in an unexposed population
of workers. This phenomenon, called
the ‘‘healthy worker effect,’’ also applies
when the rate observed among exposed
workers is greater than that found in the
general population. In this case,
assuming a study is unbiased with
respect to other factors such as smoking,
comparison with the general population
will tend to underestimate the excess
risk of disease attributable to the
substance being investigated. Several
studies drew comparisons against the
general population, including both
workers and nonworkers, with no
compensating adjustment for the
healthy worker effect. Therefore, in
these studies, the excess risk of lung
cancer attributable to dpm exposure is
likely to have been underestimated,
thereby making it more difficult to
obtain a statistically significant result.

Five of the 43 studies listed in Tables
III–4 and III–5 are negative—i.e., a lower
rate of lung cancer was found among
exposed workers than in the control
population used for comparison. None
of these five results, however, were
statistically significant. Four of the five
were cohort studies that drew
comparisons against the general

population and did not take the healthy
worker effect into account. The
remaining negative study was a case-
control study in which vehicle drivers
and locomotive engineers were
compared to clerical workers.

Two cohort studies (Waxweiler et al.,
1973; Ahlman et al., 1991) were
performed specifically on groups of
miners, and one (Boffetta et al., 1988)
addressed miners as a subgroup of a
larger population. Although an elevated
prevalence of lung cancer was found
among miners in both the 1973 and
1991 studies, the results were not
statistically significant. The 1988 study
found, after adjusting for smoking
patterns and other occupational
exposures, an 18-percent increase in the
lung cancer rate among all workers
occupationally exposed to diesel
exhaust and a 167-percent increase
among miners (relative risk = 2.67). The
latter result is statistically significant.

In addition, four case-control studies,
all of which adjusted for smoking, found
elevated rates of lung cancer associated
with mining. The results for miners in
three of these studies (Benhamou et al.,
1988; Morabia et al., 1992; Siemiatycki
et al., 1988) are given little weight
because of potential confounding by
occupational exposures to other
carcinogens. The other study (Lerchen
et al., 1987) showed a marginally
significant result for underground non-
uranium miners, but this was based on
very few cases and the extent of diesel
exposure among these miners was not
reported. Although they do not pertain
specifically to mining environments,
other studies showing statistically
significant results (most notably those
by Garshick et al., 1987 and 1988) are
based on far more data, contain better
diesel exposure information, and are
less susceptible to confounding by
extraneous risk factors.

Since none of the existing human
studies is perfect and many contain
major deficiencies, it is not surprising
that reported results differ in magnitude
and statistical significance.
Shortcomings identified in both positive
and negative studies include: possible
misclassification with respect to
exposure; incomplete or questionable
characterization of the exposed
population; unknown or uncertain
quantification of diesel exhaust
exposure; incomplete, uncertain, or
unavailable history of exposure to
tobacco smoke and other carcinogens;
and insufficient sample size, dpm
exposure, or latency period (i.e., time
since exposure) to detect a carcinogenic
effect if one exists. Indeed, in their
review of these studies, Stöber and Abel
(1996) conclude that ‘‘In this field * * *
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10 The high proportion of positive studies is
statistically significant according to the 2-tailed sign
test, which rejects, at a high confidence level, the
null hypothesis that each study is equally likely to
be positive or negative. Assuming that the studies
are independent, and that there is no systematic
bias in one direction or the other, the probability
of 38 or more out of 43 studies being either positive
or negative is less than one per million under the
null hypothesis.

epidemiology faces its limits (Taubes,
1995) * * * Many of these studies were
doomed to failure from the very
beginning.’’

Such problems, however, are not
unique to epidemiological studies
involving diesel exhaust but are
common sources of uncertainty in
virtually all epidemiological research
involving cancer. Indeed, deficiencies
such as exposure misclassification,
small sample size, and short latency
make it difficult to detect a relationship
even when one exists. Therefore, the
fact that 38 out of 43 studies showed
any excess risk of lung cancer associated
with dpm exposure may itself be a
significant result, even if the evidence
in most of those 38 studies is relatively
weak.10 The sheer number of studies
showing such an association readily
distinguishes this body of evidence from
those criticized by Taubes (1995), where
weak evidence is available from only a
single study.

At the same time, MSHA recognizes
that simply tabulating outcomes can
sometimes be misleading, since there
are generally a variety of outcomes that
could render a study positive or
negative and some studies use related
data sets. Therefore, rather than limiting
its assessment to such a tabulation,
MSHA is basing its evaluation with
respect to lung cancer largely on the two
comprehensive meta-analyses (Lipsett
and Alexeeff, 1998; Bhatia et al., 1998)
described later, in the ‘‘material
impairments’’ section of this risk
assessment. In addition to restricting
themselves to independent studies
meeting certain minimal requirements,
both meta-analyses investigated and
rejected publication bias as an
explanation for the generally positive
results reported.

All of the studies showing negative or
statistically insignificant positive
associations were either based on
relatively short observation or follow-up
periods, lacked good information about
dpm exposure, involved low duration or
intensity of dpm exposure, or, because
of inadequate sample size, lacked the
statistical power to detect effects of the
magnitude found in the ‘‘positive’’
studies. As stated by Boffetta et al.
(1988, p. 404), studies failing to show a
statistically significant association—

* * * often had low power to detect any
association, had insufficient latency periods,
or compared incidence or mortality rates
among workers to national rates only,
resulting in possible biases caused by the
‘healthy worker effect.’

Some respondents to the ANPRM
argued that such methodological
weaknesses may explain why not all of
the studies showed a statistically
significant association between dpm
exposure and an increased prevalence of
lung cancer. According to these
commenters, if an epidemiological
study shows a statistically significant
result, this often occurs in spite of
methodological weaknesses rather than
because of them. Limitations such as
potential exposure misclassification,
inadequate latency, inadequate sample
size, and insufficient duration of
exposure all make it more difficult to
obtain a statistically significant result
when a real relationship exists.

On the other hand, Stöber and Abel
(1996) argue, long with Morgan et al.
(1997) and some commenters, that even
in those epidemiological studies
showing a statistically significant
association, the magnitude of relative or
excess risk observed is too small to
demonstrate any causal link between
dpm exposure and cancer. Their
reasoning is that in these studies, errors
in the collection or interpretation of
smoking data can create a bias in the
results larger than any potential
contribution attributable to diesel
particulate. They propose that studies
failing to account for smoking habits
should be disqualified from
consideration, and that evidence of an
association from the remaining studies
should be discounted because of
potential confounding due to erroneous,
incomplete, or otherwise inadequate
characterization of smoking histories.

MSHA concurs with Cohen and
Higgins (1995), Lipsett and Alexeeff
(1998), and Bhatia et al. (1998) in not
accepting this view. MSHA does
recognize that unknown exposures to
tobacco smoke or other human
carcinogens, such as asbestos, can
distort the results of some lung cancer
studies. MSHA also agrees that
significant differences in the
distribution of confounding factors,
such as smoking history, between study
and control groups can lead to
misleading results. MSHA also
recognizes, however, that it is not
possible to design a human
epidemiological study that perfectly
controls for all potentially confounding
factors. Some degree of informed
subjective judgement is always required
in evaluating the potential significance
of unknown or uncontrolled factors.

Sixteen of the published
epidemiological studies involving lung
cancer did, in fact, control or adjust for
exposure to tobacco smoke, and some of
these also controlled or adjusted for
exposure to asbestos and other
carcinogenic substances (e.g., Garshick
et al., 1987; Steenland et al., 1990;
Boffetta et al., 1988). All but one of
these 16 epidemiological studies
reported some degree of excess risk
associated with exposure to diesel
particulate, with statistically significant
results reported in seven. These results
are less likely to be confounded than
results from studies with no adjustment.
In addition, several of the other studies
drew comparisons against internal
control groups or control groups likely
to have similar smoking habits as the
exposed groups (e.g., Garshick et al.,
1988; Gustavsson et al., 1990; and
Hansen, 1993). MSHA places more
weight on these studies than on studies
drawing comparisons against dissimilar
groups with no controls or adjustments.

According to Stöber and Abel, the
potential confounding effects of
smoking are so strong that they could
explain even statistically significant
results observed in studies where
smoking was explicitly taken into
account. MSHA agrees that variable
exposures to non-diesel lung
carcinogens, including relatively small
errors in smoking classification, could
bias individual studies. However, the
potential confounding effect of tobacco
smoke and other carcinogens can cut in
either direction. Spurious positive
associations of dpm exposure with lung
cancer would arise only if the group
exposed to dpm had a greater exposure
to these confounders than the
unexposed control group used for
comparison. If, on the contrary, the
control group happened to be more
exposed to confounders, then this
would tend to make the association
between dpm exposure and lung cancer
appear negative. Therefore, although
smoking effects could potentially distort
the results of any single study, this
effect could reasonably be expected to
make only about half the studies that
were explicitly adjusted for smoking
come out positive. Smoking is unlikely
to have been responsible for finding an
excess prevalence of lung cancer in 15
out of 16 studies in which a smoking
adjustment was applied. Based on a 2-
tailed sign test, this possibility can be
rejected at a confidence level greater
than 99.9 percent.

Even in the 27 studies involving lung
cancer for which no smoking
adjustment was made, tobacco smoke
and other carcinogens are important
confounders only to the extent that the
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11 A third such study only looked at TSP, rather
than fine particulate. It did not find a significant
association between total mortality and TSP. It is
known as the California Seventh Day Adventist
study (Abbey et al., 1991).

12 The Six Cities study also found such
relationships at elevated levels of PM15/10 and
sulfates. The ACS study was designed to follow up
on the fine particle result of the Six Cities study,
but also looked at sulfates.

13 The Six Cities study did not find a statistically
significant increase in risk among non-smokers,
suggesting that this group might not be as sensitive
to adverse health effects from exposure to fine

populations exposed and unexposed to
diesel exhaust differed systematically
with respect to these other exposures.
Twenty-three of these studies, however,
reported some degree of excess lung
cancer risk associated with diesel
exposure. This result could be attributed
to non-diesel exposures only in the
unlikely event that, in nearly all of these
studies, diesel-exposed workers
happened to be more highly exposed to
these other carcinogens than the control
groups of workers unexposed to diesel.
All five studies not showing any
association (Kaplan, 1959; DeCoufle,
1977; Waller, 1981; Edling, 1987; and
Bender, 1989) may have failed to detect
such a relationship because of too small
a study group, lack of accurate exposure
information, low duration or intensity of
exposure, and/or insufficient latency or
follow-up time.

It is also significant that the two most
comprehensive, complete, and well-
controlled studies available (Garshick et
al., 1987 and 1988) both point in the
direction of an association between dpm
exposure and an excess risk of lung
cancer. These studies took care to
address potential confounding by
tobacco smoke and asbestos exposures.
In response to the ANPRM, a consultant
to the National Coal Association who
was critical of all other available studies
acknowledged that these two:

* * * have successfully controlled for
severally [sic] potentially important
confounding factors * * * Smoking
represents so strong a potential confounding
variable that its control must be nearly
perfect if an observed association between
cancer and diesel exhaust is * * * [inferred
to be causal]. In this regard, two observations
are relevant. First, both case-control
[Garshick et al., 1987] and cohort [Garshick
et al., 1988] study designs revealed consistent
results. Second, an examination of smoking
related causes of death other than lung
cancer seemed to account for only a fraction
of the association observed between diesel
exposure and lung cancer. A high degree of
success was apparently achieved in
controlling for smoking as a potentially
confounding variable. [Submission 87–0–10,
Robert A. Michaels, RAM TRAC Corporation,
prepared for National Coal Association].

Potential biases due to extraneous risk
factors are unlikely to account for a
significant part of the excess risk in all
studies showing an association. Excess
rates of lung cancer were associated
with dpm exposure in all epidemiologic
studies of sufficient size and scope to
detect such an excess. Although it is
possible, in any individual study, that
the potentially confounding effects of
differential exposure to tobacco smoke
or other carcinogens could account for
the observed elevation in risk otherwise
attributable to diesel exposure, it is

unlikely that such effects would give
rise to positive associations in 38 out of
43 studies. As stated by Cohen and
Higgins (1995):

* * * elevations [of lung cancer] do not
appear to be fully explicable by confounding
due to cigarette smoking or other sources of
bias. Therefore, at present, exposure to diesel
exhaust provides the most reasonable
explanation for these elevations. The
association is most apparent in studies of
occupational cohorts, in which assessment of
exposure is better and more detailed analyses
have been performed. The largest relative
risks are often seen in the categories of most
probable, most intense, or longest duration of
exposure. In general population studies, in
which exposure prevalence is low and
misclassification of exposure poses a
particularly serious potential bias in the
direction of observing no effect of exposure,
most studies indicate increased risk, albeit
with considerable imprecision. [Cohen and
Higgins (1995), p. 269].

III.2.c.i.B.ii. Bladder Cancer. With
respect to cancers other than lung
cancer, MSHA’s review of the literature
identified only bladder cancer as a
possible candidate for a causal link to
dpm. Cohen and Higgins (1995)
identified and reviewed 14
epidemiological case-control studies
containing information related to dpm
exposure and bladder cancer. All but
one of these studies found elevated risks
of bladder cancer among workers in jobs
frequently associated with dpm
exposure. Findings were statistically
significant in at least four of the studies
(statistical significance was not
evaluated in three).

These studies point quite consistently
toward an excess risk of bladder cancer
among truck or bus drivers, railroad
workers, and vehicle mechanics.
However, the four available cohort
studies do not support a conclusion that
exposure to dpm is responsible for the
excess risk of bladder cancer associated
with these occupations. Furthermore,
most of the case-control studies did not
distinguish between exposure to diesel-
powered equipment and exposure to
gasoline-powered equipment for
workers having the same occupation.
When such a distinction was drawn,
there was no evidence that the
prevalence of bladder cancer was higher
for workers exposed to the diesel-
powered equipment.

This, along with the lack of
corroboration from existing cohort
studies, suggests that the excessive rates
of bladder cancer observed may be a
consequence of factors other than dpm
exposure that are also associated with
these occupations. For example, truck
and bus drivers are subjected to
vibrations while driving and may tend
to have different dietary and sleeping

habits than the general population. For
these reasons, MSHA does not find that
any convincing evidence currently
exists for a causal relationship between
dpm exposure and bladder cancer.

III.2.c.ii. Studies Based on Exposures
to Fine Particulate in Ambient Air.

Longitudinal studies examine
responses at given locations to changes
in conditions over time, whereas cross-
sectional studies compare results from
locations with different conditions at a
given point in time. Prior to 1990, cross
sectional studies were generally used to
evaluate the relationship between
mortality and long-term exposure to
particulate matter, but unaddressed
spatial confounders and other
methodological problems inherent in
such studies limited their usefulness
(EPA, 1996).

Two recent prospective cohort studies
provide better evidence of a link
between excess mortality rates and
exposure to fine particulate, although
the uncertainties here are greater than
with the short-term exposure studies
conducted in single communities. The
two studies are known as the Six Cities
study (Dockery et al., 1993), and the
American Cancer Society (ACS) study
(Pope et al., 1995).11 The first study
followed about 8,000 adults in six U.S.
cities over 14 years; the second looked
at survival data for half a million adults
in 151 U.S. cities for 7 years. After
adjusting for potential confounders,
including smoking habits, the studies
considered differences in mortality rates
between the most polluted and least
polluted cities.

Both the Six Cities study and the ACS
study found a significant association
between increased concentration of
PM2.5 and total mortality.12 The authors
of the Six Cities Study concluded that
the results suggest that exposures to fine
particulate air pollution ‘‘contributes to
excess mortality in certain U.S. cities.’’
The ACS study, which not only
controlled for smoking habits and
various occupational exposures, but
also, to some extent, for passive
exposure to tobacco smoke, found
results qualitatively consistent with
those of the Six Cities Study.13 In the
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particulate; however, the ACS study, with more
statistical power, did find an association even for
non-smokers.

ACS study, however, the estimated
increase in mortality associated with a
given increase in fine particulate
exposure was lower, though still
statistically significant. In both studies,
the largest increase observed was for
cardiopulmonary mortality. Both
studies also showed an increased risk of
lung cancer associated with increased
exposure to fine particulate, but these
results were not statistically significant.

The few studies on associations
between chronic PM2.5 exposure and
morbidity in adults show effects that are
difficult to separate from PM10 measures
and measures of acid aerosols. The
available studies, however, do show
positive associations between
particulate air pollution and adverse
health effects for those with pre-existing
respiratory or cardiovascular disease;
and as mentioned earlier, there is a large
body of evidence showing that
respiratory diseases classified as COPD
are significantly more prevalent among
miners than in the general population.
It also appears that PM exposure may
exacerbate existing respiratory
infections and asthma, increasing the
risk of severe outcomes in individuals
who have such conditions (EPA, 1996).

III.2.d. Mechanisms of Toxicity

As described in Part II, the particulate
fraction of diesel exhaust is made up of
aggregated soot particles. Each soot
particle consists of an insoluble,
elemental carbon core and an adsorbed,
surface coating of relatively soluble
organic compounds, such as polycyclic
aromatic hydrocarbons (PAH’s). When
released into an atmosphere, the soot
particles formed during combustion
tend to aggregate into larger particles.

The literature on deposition of fine
particles in the respiratory tract is
reviewed in Green and Watson (1995)
and U.S. EPA (1996). The mechanisms
responsible for the broad range of
potential particle-related health effects
will vary depending on the site of
deposition. Once deposited, the
particles may be cleared from the lung,
translocated into the interstitium,
sequestered in the lymph nodes,
metabolized, or be otherwise
transformed by various mechanisms.

As suggested by Figure II–1 of this
preamble, most of the aggregated
particles making up dpm never get any
larger than one micrometer in diameter.
Particles this small are able to penetrate
into the deepest regions of the lungs,
called alveoli. In the alveoli, the
particles can mix with and be dispersed

by a substance called surfactant, which
is secreted by cells lining the alveolar
surfaces.

MSHA would welcome any additional
information, not already covered in the
surveys cited above, on fine particle
deposition in the respiratory tract,
especially as it might pertain to lung
loading in miners exposed to a
combination of diesel particulate and
other dusts. Any such additional
information will be placed into the
public record and considered by MSHA
before a final rule is adopted.

III.2.d.i. Effects Other than Cancer. A
number of controlled animal studies
have been undertaken to ascertain the
toxic effects of exposure to diesel
exhaust and its components. Watson
and Green (1995) reviewed
approximately 50 reports describing
noncancerous effects in animals
resulting from the inhalation of diesel
exhaust. While most of the studies were
conducted with rats or hamsters, some
information was also available from
studies conducted using cats, guinea
pigs, and monkeys. The authors also
correlated reported effects with different
descriptors of dose. From their review of
these studies, Watson and Green
concluded that:

(a) Animals exposed to diesel exhaust
exhibit a number of noncancerous
pulmonary effects, including chronic
inflammation, epithelial cell
hyperplasia, metaplasia, alterations in
connective tissue, pulmonary fibrosis,
and compromised pulmonary function.

(b) Cumulative weekly exposure to
diesel exhaust of 70 to 80 mg•hr/m3 or
greater are associated with the presence
of chronic inflammation, epithelial cell
proliferation, and depressed alveolar
clearance in chronically exposed rats.

(c) The extrapolation of responses in
animals to noncancer endpoints in
humans is uncertain. Rats were the most
sensitive animal species studied.

Subsequent to the review by Watson
and Green, there have been a number of
animal studies on allergic immune
responses to dpm. Takano et al. (1997)
investigated the effects of dpm injected
into mice through an intratracheal tube
and found manifestations of allergic
asthma, including enhanced antigen-
induced airway inflammation, increased
local expression of cytokine proteins,
and increased production of antigen-
specific immunoglobulins. The authors
concluded that the study demonstrated
dpm’s enhancing effects on allergic
asthma and that the results suggest that
dpm is ‘‘implicated in the increasing
prevalence of allergic asthma in recent
years.’’ Similarly, Ichinose et al. (1997)
found that five different strains of mice
injected intratracheally with dpm

exhibited manifestations of allergic
asthma, as expressed by enhanced
airway inflammation, which were
correlated with an increased production
of antigen-specific immunoglobulin due
to the dpm. The authors concluded that
dpm enhances manifestations of allergic
airway inflammation and that ‘‘* * *
the cause of individual differences in
humans at the onset of allergic asthma
may be related to differences in antigen-
induced immune responses * * *.’’

Several laboratory animal studies
have been performed to ascertain
whether the effects of diesel exhaust are
attributable specifically to the
particulate fraction. (Heinrich et al.,
1986; Iwai et al., 1986; Brightwell et al.,
1986). These studies compare the effects
of chronic exposure to whole diesel
exhaust with the effects of filtered
exhaust containing no particles. The
studies demonstrate that when the
exhaust is sufficiently diluted to nullify
the effects of gaseous irritants (NO2 and
SO2), irritant vapors (aldehydes), CO,
and other systemic toxicants, diesel
particles are the prime etiologic agents
of noncancer health effects. Exposure to
dpm produced changes in the lung that
were much more prominent than those
evoked by the gaseous fraction alone.
Marked differences in the effects of
whole and filtered diesel exhaust were
also evident from general toxicological
indices, such as body weight, lung
weight, and pulmonary histopathology.
This provides strong evidence that the
toxic component in diesel emissions
producing the effects noted in other
animal studies is due to the particulate
fraction.

The mechanisms that may lead to
adverse health effects in humans from
inhaling fine particulates are not fully
understood, but potential mechanisms
that have been hypothesized for non-
cancerous outcomes are summarized in
Table III–6. A comprehensive review of
the toxicity literature is provided in U.S.
EPA (1996).

Deposition of particulates in the
human respiratory tract could initiate
events leading to increased airflow
obstruction, impaired clearance,
impaired host defenses, or increased
epithelial permeability. Airflow
obstruction could result from laryngeal
constriction or bronchoconstriction
secondary to stimulation of receptors in
extrathoracic or intrathoracic airways.
In addition to reflex airway narrowing,
reflex or local stimulation of mucus
secretion could lead to mucus
hypersecretion and could eventually
lead to mucus plugging in small
airways.

Pulmonary changes that contribute to
cardiovascular responses include a
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variety of mechanisms that can lead to
hypoxemia, including
bronchoconstriction, apnea, impaired
diffusion, and production of
inflammatory mediators. Hypoxia can
lead to cardiac arrhythmias and other
cardiac electrophysiologic responses
that, in turn, may lead to ventricular
fibrillation and ultimately cardiac arrest.
Furthermore, many respiratory receptors
have direct cardiovascular effects. For
example, stimulation of C-fibers leads to
bradycardia and hypertension, and
stimulation of laryngeal receptors can
result in hypertension, cardiac
arrhythmia, bradycardia, apnea, and
even cardiac arrest. Nasal receptor or
pulmonary J-receptor stimulation can
lead to vagally mediated bradycardia
and hypertension (Widdicombe, 1988).

In addition to possible acute toxicity
of particles in the respiratory tract,
chronic exposure to particles that
deposit in the lung may induce
inflammation. Inflammatory responses
can lead to increased permeability and
possibly diffusion abnormality.
Furthermore, mediators released during
an inflammatory response could cause
release of factors in the clotting cascade
that may lead to an increased risk of
thrombus formation in the vascular
system (Seaton, 1995). Persistent
inflammation, or repeated cycles of
acute lung injury and healing, can
induce chronic lung injury. Retention of
the particles may be associated with the
initiation and/or progression of COPD.

III.2.d.ii. Lung Cancer.
III.2.d.ii.A. Genotoxicological

Evidence. Many studies have shown
that diesel soot, or its organic
component, can increase the likelihood
of genetic mutations during the
biological process of cell division and
replication. A survey of the applicable
scientific literature is provided in
Shirnamé-Moré (1995). What makes this
body of research relevant to the risk of
cancer is that mutations in critical genes
can sometimes initiate, promote, or
advance a process of carcinogenesis.

The determination of genotoxicity has
frequently been made by treating diesel
soot with organic solvents such as
dichloromethane and dimethyl
sulfoxide. The solvent removes the
organic compounds from the carbon
core. After the solvent evaporates, the
mutagenic potential of the extracted
organic material is tested by applying it
to bacterial, mammalian, or human cells
propagated in a laboratory culture. In
general, the results of these studies have
shown that various components of the
organic material can induce mutations
and chromosomal aberrations.

A critical issue is whether whole
diesel particulate is mutagenic when

dispersed by substances present in the
lung. Since the laboratory procedure for
extracting organic material with
solvents bears little resemblance to the
physiological environment of the lung,
it is important to establish whether dpm
as a whole is genotoxic, without solvent
extraction. Early research indicated that
this was not the case and, therefore, that
the active genotoxic materials adhering
to the carbon core of diesel particles
might not be biologically damaging or
even available to cells in the lung
(Brooks et al., 1980; King et al., 1981;
Siak et al., 1981). A number of more
recent research papers, however, have
shown that dpm, without solvent
extraction, can cause DNA damage
when the soot is dispersed in the
pulmonary surfactant that coats the
surface of the alveoli (Wallace et al.,
1987; Keane et al., 1991; Gu et al., 1991;
Gu et al., 1992). From these studies,
NIOSH has concluded:

* * * the solvent extract of diesel soot
and the surfactant dispersion of diesel soot
particles were found to be active in
procaryotic cell and eukaryotic cell in vitro
genotoxicity assays. The cited data indicate
that respired diesel soot particles on the
surface of the lung alveoli and respiratory
bronchioles can be dispersed in the
surfactant-rich aqueous phase lining the
surfaces, and that genotoxic material
associated with such dispersed soot particles
is biologically available and genotoxically
active. Therefore, this research demonstrates
the biological availability of active genotoxic
materials without organic solvent interaction.
[Cover letter to NIOSH response to ANPRM.]

From this conclusion, it follows that
dpm itself, and not only its organic
extract, can cause genetic mutations
when dispersed by a substance present
in the lung.

The biological availability of the
genotoxic components is also supported
directly by studies showing genotoxic
effects of exposure to whole dpm. The
formation of DNA adducts is an
important indicator of genotoxicity and
potential carcinogenicity. If DNA
adducts are not repaired, then a
mutation or chromosomal aberration
can occur during normal mitosis (i.e.,
cell replication). Hemminki et al. (1994)
found that DNA adducts were
significantly elevated in nonsmoking
bus maintenance and truck terminal
workers, as compared to a control group
of hospital mechanics, with the highest
adduct levels found among garage and
forklift workers. Similarly, Nielsen et al.
(1996) found that DNA adducts were
significantly increased in bus garage
workers and mechanics exposed to dpm
as compared to a control group.

III.2.d.ii.B. Evidence from Animal
Studies. Bond et al. (1990) investigated

differences in peripheral lung DNA
adduct formation among rats, hamsters,
mice, and monkeys exposed to dpm at
a concentration of 8100 µg/m3 for 12
weeks. Mice and hamsters showed no
increase of DNA adducts in their
peripheral lung tissue, whereas rats and
monkeys showed a 60 to 80% increase.
The increased prevalence of lung DNA
adducts in monkeys suggests that, with
respect to DNA adduct formation, the
human lungs’ response to dpm
inhalation may more closely resemble
that of the rat than that of the hamster
or mouse.

Mauderly (1992) and Busby and
Newberne (1995) provide reviews of the
scientific literature relating to excess
lung cancers observed among laboratory
animals chronically exposed to filtered
and unfiltered diesel exhaust. The
experimental data demonstrate that
chronic exposure to whole diesel
exhaust increases the risk of lung cancer
in rats and that dpm is the causative
agent. This carcinogenic effect has been
confirmed in two strains of rats and in
at least five laboratories. Experimental
results for animal species other than the
rat, however, are either inconclusive or,
in the case of Syrian hamsters,
suggestive of no carcinogenic effect.
This is consistent with the observation,
mentioned above, that lung DNA adduct
formation is increased among exposed
rats but not among exposed hamsters or
mice.

The conflicting results for rats and
hamsters indicate that the carcinogenic
effects of dpm exposure may be species-
dependent. Indeed, monkey lungs have
been reported to respond quite
differently than rat lungs to both diesel
exhaust and coal dust (Nikula, 1997).
Therefore, the results from rat
experiments do not, by themselves, infer
any excess risk due to dpm exposure for
humans. The human epidemiological
data, however, indicate that humans
comprise a species that, like rats and
unlike hamsters, suffer a carcinogenic
response to dpm exposure. Therefore,
MSHA considers the rat studies at least
relevant to an evaluation of the risk for
humans.

When dpm is inhaled, a number of
adverse effects that may contribute to
carcinogenesis are discernable by
microscopic and biochemical analysis.
For a comprehensive review of these
effects, see Watson and Green (1995). In
brief, these effects begin with
phagocytosis, which is essentially an
attack on the diesel particles by cells
called alveolar macrophages. The
macrophages engulf and ingest the
diesel particles, subjecting them to
detoxifying enzymes. Although this is a
normal physiological response to the
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14 The Agency has recently learned of another
report, from the University of Newcastle, Australia,
that found no elevated risk of lung cancer among
coal miners. Although the Agency has not been able
to acquire this report in time to include it in the
present risk assessment, it will be reviewed and
considered in the risk assessment prior to any final
action. The Agency would also welcome
information on any additional studies or reports on
this issue of which it is not currently aware.

inhalation of foreign substances, the
process can produce various chemical
byproducts injurious to normal cells. In
attacking the diesel particles, the
activated macrophages release chemical
agents that attract neutrophils (a type of
white blood cell that destroys
microorganisms) and additional alveolar
macrophages. As the lung burden of
diesel particles increases, aggregations
of particle-laden macrophages form in
alveoli adjacent to terminal bronchioles,
the number of Type II cells lining
particle-laden alveoli increases, and
particles lodge within alveolar and
peribronchial tissues and associated
lymph nodes. The neutrophils and
macrophages release mediators of
inflammation and oxygen radicals,
which have been implicated in causing
various forms of chromosomal damage,
genetic mutations, and malignant
transformation of cells (Weitzman and
Gordon, 1990). Eventually, the particle-
laden macrophages are functionally
altered, resulting in decreased viability
and impaired phagocytosis and
clearance of particles. This series of
events may result in pulmonary
inflammatory, fibrotic, or
emphysematous lesions that can
ultimately develop into cancerous
tumors.

Such reactions have also been
observed in rats exposed to high
concentrations of fine particles with no
organic component (Mauderly et al.,
1994; Heinrich et al., 1994 and 1995;
Nikula et al., 1995). Rats exposed to
titanium dioxide or pure carbon
(‘‘carbon-black’’) particles, which are
not considered to be genotoxic,
developed lung cancers at about the
same rate as rats exposed to whole
diesel exhaust. Therefore, it appears that
the toxicity of dpm, at least in some
species, may result largely from a
biochemical response to the particle
itself rather than from specific effects of
the adsorbed organic compounds.

Some researchers have interpreted the
carbon-black and titanium dioxide
studies as also suggesting that (1) the
carcinogenic mechanism in rats
depends on massive overloading of the
lung and (2) that this may provide a
mechanism of carcinogenesis specific to
rats which does not occur in other
rodents or in humans (Oberdörster,
1994; Watson and Valberg, 1996). Some
commenters on the ANPRM cited the
lack of any link between lung cancer
and coal dust or carbon black exposure
as evidence that carbon particles, by
themselves, are not carcinogenic in
humans. Coal mine dust, however,
consists almost entirely of particles
larger than those forming the carbon
core of dpm or used in the carbon-black

and titanium dioxide rat studies.
Furthermore, although there have been
eight studies 14 reporting no excess risk
of lung cancer among coal miners
(Liddell, 1973; Costello et al., 1974;
Armstrong et al., 1979; Rooke et al.,
1979; Ames et al., 1983; Atuhaire et al.,
1985; Miller and Jacobsen, 1985;
Kuempel et al., 1995), five studies have
reported an elevated risk of lung cancer
for those exposed to coal dust
(Enterline, 1972; Rockette, 1977; Correa
et al., 1984; Levin et al., 1988; Morfeld
et al., 1997). The positive results in two
of these studies (Enterline, 1972;
Rockette, 1977) were statistically
significant. Furthermore, excess lung
cancers have been reported among
carbon black production workers
(Hodgson and Jones, 1985; Siemiatycki,
1991; Parent et al., 1996). MSHA is not
aware of any evidence that a mechanism
of carcinogenesis due to fine particle
overload is inapplicable to humans.
Studies carried out on rodents certainly
do not provide such evidence.

The carbon-black and titanium
dioxide studies indicate that lung
cancers in rats exposed to dpm may be
induced by a mechanism that does not
require the bioavailability of genotoxic
organic compounds adsorbed on the
elemental carbon particles. These
studies do not, however, prove that the
only significant agent of carcinogenesis
in rats exposed to diesel particulate is
the non-soluble carbon core. Nor do the
carbon-black studies prove that the only
significant mechanism of carcinogenesis
due to diesel particulate is lung
overload. Due to the relatively high
doses administered in the rat studies, it
is conceivable that an overload
phenomenon masks or parallels other
potential routes to cancer. It may be that
effects of the genotoxic organic
compounds are merely masked or
displaced by overloading in the rat
studies. Gallagher et al. (1994) exposed
different groups of rats to diesel
exhaust, carbon black, or titanium
dioxide and detected species of lung
DNA adducts in the rats exposed to dpm
that were not found in the controls or
rats exposed to carbon black or titanium
dioxide.

Particle overload may provide the
dominant route to lung cancer at very
high concentrations of fine particulate,
while genotoxic mechanisms may

provide the primary route under lower-
level exposure conditions. In humans
exposed over a working lifetime to
doses insufficient to cause overload,
carcinogenic mechanisms unrelated to
overload may dominate, as indicated by
the human epidemiological studies and
the data on human DNA adducts cited
above. Therefore, the carbon black
results observed in the rat studies do not
preclude the possibility that the organic
component of dpm has important
genotoxic effects in humans (Nauss et
al., 1995).

Even if the genotoxic organic
compounds in dpm were biologically
unavailable and played no role in
human carcinogenesis, this would not
rule out the possibility of a genotoxic
route to lung cancer (even for rats) due
to the presence of dpm particles
themselves. For example, as a byproduct
of the biochemical response to the
presence of dpm in the alveoli, free
oxidant radicals may be released as
macrophages attempt to digest the
particles. There is evidence that dpm
can both induce production of active
oxygen agents and also depress the
activity of naturally occurring
antioxidant enzymes (Mori, 1996; Sagai,
1993). Oxidants can induce
carcinogenesis either by reacting
directly with DNA, or by stimulating
cell replication, or both (Weitzman and
Gordon, 1990). This would provide a
mutagenic route to lung cancer with no
threshold. Therefore, the carbon black
and titanium dioxide studies cited
above do not prove that dpm exposure
has no incremental, genotoxic effects or
that there is a threshold below which
dpm exposure poses no risk of causing
lung cancer.

It is noteworthy, however, that dpm
exposure levels recorded in some mines
have been almost as high as laboratory
exposures administered to rats showing
a clearly positive response. Intermittent,
occupational exposure levels greater
than about 500 µg/m3 dpm may
overwhelm the human lung clearance
mechanism (Nauss et al., 1995).
Therefore, concentrations at levels
currently observed in some mines could
be expected to cause overload in some
humans, possibly inducing lung cancer
by a mechanism similar to what occurs
in rats. MSHA would like to receive
additional scientific information on this
issue, especially as it relates to lung
loading in miners exposed to a
combination of diesel particulate and
other dusts.

As suggested above, such a
mechanism would not necessarily be
the only route to carcinogenesis in
humans and, therefore, would not imply
that dpm concentrations too low to
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cause overload are safe for humans.
Furthermore, a proportion of exposed
individuals can always be expected to
be more susceptible than normal.
Therefore, at lower dpm concentrations,
particle overload may still provide a
route to lung cancer in susceptible
humans. At even lower concentrations,
other routes to carcinogenesis in
humans may predominate, possibly
involving genotoxic effects.

III.3. Characterization of Risk
Having reviewed the evidence of

health effects associated with exposure
to dpm, MSHA has evaluated that
evidence to ascertain whether exposure
levels currently existing in mines
warrant regulatory action pursuant to
the Mine Act. The criteria for this
evaluation are established by the Mine
Act and related court decisions. Section
101(a)(6)(A) provides that:

The Secretary, in promulgating mandatory
standards dealing with toxic materials or
harmful physical agents under this
subsection, shall set standards which most
adequately assure on the basis of the best
available evidence that no miner will suffer
material impairment of health or functional
capacity even if such miner has regular
exposure to the hazards dealt with by such
standard for the period of his working life.

Based on court interpretations of
similar language under the
Occupational Safety and Health Act,
there are three questions that need to be
addressed: (1) whether health effects
associated with dpm exposure
constitute a ‘‘material impairment’’ to
miner health or functional capacity; (2)
whether exposed miners are at
significant excess risk of incurring any
of these material impairments; and (3)
whether the proposed rule will
substantially reduce such risks.

The criteria for evaluating the health
effects evidence do not require scientific
certainty. As noted by Justice Stevens in
an important case on risk involving the
Occupational Safety and Health
Administration, the need to evaluate
risk does not mean an agency is placed
into a ‘‘mathematical straightjacket.’’
[Industrial Union Department, AFL–CIO
v. American Petroleum Institute, 448
U.S. 607, 100 S.Ct. 2844 (1980),
hereinafter designated the ‘‘Benzene’’
case]. When regulating on the edge of
scientific knowledge, certainty may not
be possible; and—
so long as they are supported by a body of
reputable scientific thought, the Agency is
free to use conservative assumptions in
interpreting the data * * * risking error on
the side of overprotection rather than
underprotection. [Id. at 656].

The statutory criteria for evaluating the
health evidence do not require MSHA to

wait for absolute precision. In fact,
MSHA is required to use the ‘‘best
available evidence.’’ (Emphasis added).

III.3.a. Material Impairments to Miner
Health or Functional Capacity

From its review of the literature cited
in Part III.2, MSHA has tentatively
concluded that underground miners
exposed to current levels of dpm are at
excess risk of incurring the following
three kinds of material impairment: (i)
sensory irritations and respiratory
symptoms; (ii) death from
cardiovascular, cardiopulmonary, or
respiratory causes; and (iii) lung cancer.
The basis for linking these with dpm
exposure is summarized in the
following three subsections.

III.3.a.i. Sensory Irritations and
Respiratory Symptoms. Kahn et al.
(1988), Battigelli (1965), Gamble et al.
(1987a) and Rudell et al. (1996)
identified a number of debilitating acute
responses to diesel exhaust exposure:
irritation of the eyes, nose and throat;
headaches, nausea, and vomiting; chest
tightness and wheeze. These symptoms
were also reported by miners at the 1995
workshops. In addition, Ulfvarson et al.
(1987, 1990) found evidence of reduced
lung function in workers exposed to
dpm for a single shift.

Although there is evidence that such
symptoms subside within one to three
days of no occupational exposure, a
miner who must be exposed to dpm day
after day in order to earn a living may
not have time to recover from such
effects. Hence, the opportunity for a so-
called ‘‘reversible’’ health effect to
reverse itself may not be present for
many miners. Furthermore, effects such
as stinging, itching and burning of the
eyes, tearing, wheezing, and other types
of sensory irritation can cause severe
discomfort and can, in some cases, be
seriously disabling. Also, workers
experiencing sufficiently severe sensory
irritations can be distracted as a result
of their symptoms, thereby endangering
other workers and increasing the risk of
accidents. For these reasons, MSHA
considers such irritations to constitute
‘‘material impairments’’ of health or
functional capacity within the meaning
of the Act, regardless of whether or not
they are reversible. Further discussion
of why MSHA believes reversible effects
can constitute material impairments can
be found earlier in this risk assessment,
in the section entitled ‘‘Relevance of
Health Effects that are Reversible.’’

The best available evidence also
points to more severe respiratory
consequences of exposure to dpm.
Significant associations have been
detected between acute environmental
exposures to fine particulates and

debilitating respiratory impairments in
adults, as measured by lost work days,
hospital admissions, and emergency
room visits. Short-term exposures to
fine particulates, or particulate air
pollution in general, have been
associated with significant increases in
the risk of hospitalization for both
pneumonia and COPD (EPA, 1996).

The risk of severe respiratory effects
is exemplified by specific cases of
persistent asthma linked to diesel
exposure (Wade and Newman, 1993).
There is considerable evidence for a
causal connection between dpm
exposure and increased manifestations
of allergic asthma and other allergic
respiratory diseases, coming from recent
experiments on animals and human
cells (Peterson and Saxon, 1996; Diaz-
Sanchez, 1997; Takano et al., 1997;
Ichinose et al., 1997). Such health
outcomes are clearly ‘‘material
impairments’’ of health or functional
capacity within the meaning of the Act.

III.3.a.ii. Excess Risk of Death from
Cardiovascular, Cardiopulmonary, or
Respiratory Causes. The evidence from
air pollution studies identifies death,
largely from cardiovascular or
respiratory causes, as an endpoint
significantly associated with acute
exposures to fine particulates. The
weight of epidemiological evidence
indicates that short-term ambient
exposure to particulate air pollution
contributes to an increased risk of daily
mortality. Time-series analyses strongly
suggest a positive effect on daily
mortality across the entire range of
ambient particulate pollution levels.
Relative risk estimates for daily
mortality in relation to daily ambient
particulate concentration are
consistently positive and statistically
significant across a variety of statistical
modeling approaches and methods of
adjustment for effects of relevant
covariates such as season, weather, and
co-pollutants. After thoroughly
reviewing this body of evidence, the
U.S. Environmental Protection Agency
(EPA) concluded:

It is extremely unlikely that study designs
not yet employed, covariates not yet
identified, or statistical techniques not yet
developed could wholly negate the large and
consistent body of epidemiological evidence
* * *.

There is also substantial evidence of
a relationship between chronic exposure
to fine particulates and an excess (age-
adjusted) risk of mortality, especially
from cardiopulmonary diseases. The Six
Cities and ACS studies of ambient air
particulates both found a significant
association between chronic exposure to
fine particles and excess mortality. In
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15 To address potential publication bias, the
authors identified several unpublished studies on
truck drivers and noted that elevated risks for
exposed workers observed in these studies were
similar to those in the published studies utilized.
Based on this and a ‘’funnel plot’’ for the included
studies, the authors concluded that there was no
indication of publication bias.

both studies, after adjusting for smoking
habits, a statistically significant excess
risk of cardiopulmonary mortality was
found in the city with the highest
average concentration of fine particulate
(i.e., PM2.5) as compared to the city with
the lowest. Both studies also found
excess deaths due to lung cancer in the
cities with the higher average level of
PM2.5, but these results were not
statistically significant (EPA, 1996). The
EPA concluded that—

* * * the chronic exposure studies, taken
together, suggest there may be increases in
mortality in disease categories that are
consistent with long-term exposure to
airborne particles and that at least some
fraction of these deaths reflect cumulative
PM impacts above and beyond those exerted
by acute exposure events* * * There tends
to be an increasing correlation of long-term
mortality with PM indicators as they become
more reflective of fine particle levels (EPA,
1996).

Whether associated with acute or
chronic exposures, the excess risk of
death that has been linked to pollution
of the air with fine particles like dpm is
clearly a ‘‘material impairment’’ of
health or functional capacity within the
meaning of the Act.

III.3.a.iii. Lung Cancer. It is clear that
lung cancer constitutes a ‘‘material
impairment’’ of health or functional
capacity within the meaning of the Act.
Questions have been raised however, as
to whether the evidence linking dpm
exposure with an excess risk of lung
cancer demonstrates a causal
connection (Stöber and Abel, 1996;
Watson and Valberg, 1996; Cox, 1997;
Morgan et al., 1997; Silverman, 1998).

MSHA recognizes that no single one
of the existing epidemiological studies,
viewed in isolation, provides conclusive
evidence of a causal connection
between dpm exposure and an elevated
risk of lung cancer in humans.
Consistency and coherency of results,
however, do provide such evidence.
Although no epidemiological study is
flawless, studies of both cohort and
case-control design have quite
consistently shown that chronic
exposure to diesel exhaust, in a variety
of occupational circumstances, is
associated with an increased risk of lung
cancer. With only rare exceptions,
involving too few workers and/or
observation periods too short to have a
good chance of detecting excess cancer
risk, the human studies have shown a
greater risk of lung cancer among
exposed workers than among
comparable unexposed workers.

Lipsett and Alexeeff (1998) performed
a comprehensive statistical meta-
analysis of the epidemiological
literature on lung cancer and dpm

exposure. This analysis systematically
combined the results of the studies
summarized in Tables III–4 and III–5.
Some studies were eliminated because
they did not allow for a period of at
least 10 years for the development of
clinically detectable lung cancer. Others
were eliminated because of bias
resulting from incomplete ascertainment
of lung cancer cases in cohort studies or
because they examined the same cohort
population as another study. One study
was excluded because standard errors
could not be calculated from the data
presented. The remaining 30 studies
were analyzed using both a fixed-effects
and a random-effect analysis of variance
(ANOVA) model. Sources of
heterogeneity in results were
investigated by subset analysis; using
categorical variables to characterize
each study’s design; target population
(general or industry-specific);
occupational group; source of control or
reference population; latency; duration
of exposure; method of ascertaining
occupation; location (North America or
Europe); covariate adjustments (age,
smoking, and/or asbestos exposure); and
absence or presence of a clear healthy
worker effect (as manifested by lower
than expected all-cause mortality in the
occupational population under study).

Sensitivity analyses were conducted
to evaluate the sensitivity of results to
inclusion criteria and to various
assumptions used in the analysis. This
included substitution of excluded
‘‘redundant’’ studies of same cohort
population for the included studies and
exclusion of studies involving
questionable exposure to dpm. An
influence analysis was also conducted
to examine the effect of dropping one
study at a time, to determine if any
individual study had a disproportionate
effect on the ANOVA. Potential effects
of publication bias were also
investigated. The authors concluded:

The results of this meta-analysis indicate a
consistent positive association between
occupations involving diesel exhaust
exposure and the development of lung
cancer. Although substantial heterogeneity
existed in the initial pooled analysis,
stratification on several factors identified a
relationship that persisted throughout
various influence and sensitivity
analyses * * *.

This meta-analysis provides evidence
consistent with the hypothesis that exposure
to diesel exhaust is associated with an
increased risk of lung cancer. The pooled
estimates clearly reflect the existence of a
positive relationship between diesel exhaust
and lung cancer in a variety of diesel-
exposed occupations, which is supported
when the most important confounder,
cigarette smoking, is measured and
controlled. There is suggestive evidence of an

exposure-response relationship in the
smoking adjusted studies as well. Many of
the subset analyses indicated the presence of
substantial heterogeneity among the pooled
estimates. Much of the heterogeneity
observed, however, is due to the presence or
absence of adjustment for smoking in the
individual study risk estimates, to
occupation-specific influences on exposure,
to potential selection biases, and other
aspects of study design.

A second, independent meta-analysis
of epidemiological studies published in
peer-reviewed journals was conducted
by Bhatia et al. (1998).15 In this analysis,
studies were excluded if actual work
with diesel equipment ‘‘could not be
confirmed or reliably inferred’’ or if an
inadequate latency period was allowed
for cancer to develop, as indicated by
less than 10 years from time of first
exposure to end of follow-up. Studies of
miners were also excluded, because of
potential exposure to radon and silica.
Likewise, studies were excluded if they
exhibited selection bias or examined the
same cohort population as a study
published later. A total of 29
independent studies from 23 published
sources were identified as meeting the
inclusion criteria. After assigning each
of these 29 studies a weight
proportional to its estimated precision,
pooled relative risks were calculated
based on the following groups of
studies: all 29 studies; all case-control
studies; all cohort studies; cohort
studies using internal reference
populations; cohort studies making
external comparisons; studies adjusted
for smoking; studies not adjusted for
smoking; and studies grouped by
occupation (railroad workers,
equipment operators, truck drivers, and
bus workers). Elevated risks were shown
for exposed workers overall and within
every individual group of studies
analyzed. A positive duration-response
relationship was observed in those
studies presenting results according to
employment duration. The weighted,
pooled estimates of relative risk were
identical for case-control and cohort
studies and nearly identical for studies
with or without smoking adjustments.
Based on their stratified analysis, the
authors argued that—
the heterogeneity in observed relative risk
estimates may be explained by differences
between studies in methods, in populations
studied and comparison groups used, in
latency intervals, in intensity and duration of



17540 Federal Register / Vol. 63, No. 68 / Thursday, April 9, 1998 / Proposed Rules

16 For comparability with occupational lifetime
exposure levels, the environmental ambient air
concentration has been multiplied by a factor of
approximately 4.7. This factor reflects a 45-year
occupational lifetime with 240 working days per
year, as opposed to a 70-year environmental
lifetime with 365-days per year, and assumes that
air inhaled during a work shift comprises half the
total air inhaled during a 24-hour day.

exposure, and in the chemical and
physical characteristics of diesel
exhaust.

They concluded that the elevated risk of
lung cancer observed among exposed
workers was unlikely to be due to
chance, that confounding from smoking
is unlikely to explain all of the excess
risk, and that ‘‘this meta-analysis
supports a causal association between
increased risks for lung cancer and
exposure to diesel exhaust.’’

As discussed earlier in the section
entitled ‘‘Mechanisms of Toxicity,’’
animal studies have confirmed that
diesel exhaust can increase the risk of
lung cancer in some species and shown
that dpm (rather than the gaseous
fraction of diesel exhaust) is the causal
agent. MSHA, however, views results
from animal studies as subordinate to
the results obtained from human
studies. Since the human studies show
increased risk of lung cancer at dpm
levels lower than what might be
expected to cause overload, they
provide evidence that overload may not
be the only mechanism at work among
humans. The fact that dpm has been
proven to cause lung cancer in
laboratory rats is of interest primarily in
supporting the plausibility of a causal
interpretation for relationships observed
in the human studies.

Similarly, the genotoxicological
evidence provides additional support
for a causal interpretation of
associations observed in the
epidemiological studies. This evidence
shows that dpm dispersed by alveolar
surfactant can have mutagenic effects,
thereby providing a genotoxic route to
carcinogenesis independent of
overloading the lung with particles.
Chemical byproducts of phagocytosis
may provide another genotoxic route.
Inhalation of diesel emissions has been
shown to cause DNA adduct formation
in peripheral lung cells of rats and
monkeys, and increased levels of human
DNA adducts have been found in
association with occupational
exposures. Therefore, there is little basis
for postulating that a threshold exists,
demarcating overload, below which
dpm would not be expected to induce
lung cancers in humans.

Results from the epidemiological
studies, the animal studies, and the
genotoxicological studies are coherent
and mutually reinforcing. After
considering all these results, MSHA has
concluded that the epidemiological
studies, supported by the experimental
data establishing the plausibility of a
causal connection, provide strong
evidence that chronic occupational dpm

exposure increases the risk of lung
cancer in humans.

III.3.b. Significance of the Risk of
Material Impairment to Miners

The fact that there is substantial
evidence that dpm exposure can
materially impair miner health in
several ways does not imply that miners
will necessarily suffer such
impairments. This section will consider
the significance of the risk faced by
miners exposed to dpm.

III.3.b.i. Definition of a Significant
Risk. The benzene case, referred to
earlier in this section, provides the
starting point for MSHA’s analysis of
this issue. Soon after its enactment in
1970, OSHA adopted a ‘‘consensus’’
standard on exposure to benzene, as
required and authorized by the OSH
Act. The basic part of the standard was
an average exposure limit of 10 parts per
million over an 8-hour workday. The
consensus standard had been
established over time to deal with
concerns about poisoning from this
substance (448 U.S. 607, 617). Several
years later, NIOSH recommended that
OSHA alter the standard to take into
account evidence suggesting that
benzene was also a carcinogen. (Id., at
619 et seq.). Although the ‘‘evidence in
the administrative record of adverse
effects of benzene exposure at 10 ppm
is sketchy at best,’’ OSHA was operating
under a policy that there was no safe
exposure level to a carcinogen. (Id., at
631). Once the evidence was adequate to
reach a conclusion that a substance was
a carcinogen, the policy required the
agency to set the limit at the lowest
level feasible for the industry. (Id., at
613). Accordingly, the Agency proposed
lowering the permissible exposure limit
to 1 ppm.

The Supreme Court rejected this
approach. Noting that the OSH Act
requires ‘‘safe or healthful
employment,’’ the court stated that—

* * * ‘safe’ is not the equivalent of ‘risk-
free’ * * * a workplace can hardly be
considered ‘unsafe’ unless it threatens the
workers with a significant risk of harm.
Therefore, before he can promulgate any
permanent health or safety standard, the
Secretary is required to make a threshold
finding that a place of employment is
unsafe—in the sense that significant risks are
present and can be eliminated or lessened by
a change in practices. [Id., at 642, italics in
original.]

The court went on to explain that it is
the Agency that determines how to
make such a threshold finding:

First, the requirement that a ‘significant’
risk be identified is not a mathematical
straitjacket. It is the Agency’s responsibility
to determine, in the first instance, what it

considered to be a ‘significant’ risk. Some
risks are plainly acceptable and others are
plainly unacceptable. If, for example, the
odds are one in a billion that a person will
die from cancer by taking a drink of
chlorinated water, the risk clearly could not
be considered significant. On the other hand,
if the odds are one in a thousand that regular
inhalation of gasoline vapors that are 2%
benzene will be fatal, a reasonable person
might well consider the risk significant and
take appropriate steps to decrease or
eliminate it. Although the Agency has no
duty to calculate the exact probability of
harm, it does have an obligation to find that
a significant risk is present before it can
characterize a place of employment as
‘unsafe.’ [Id., at 655.]

The court noted that the Agency’s
‘‘* * * determination that a particular
level of risk is ‘significant’ will be based
largely on policy considerations.’’ (Id.,
note 62.)

III.3.b.ii. Evidence of Significant Risk
at Current Exposure Levels. In
evaluating the significance of the risks
to miners, a key factor is the very high
concentrations of diesel particulate to
which a number of those miners are
currently exposed—compared to
ambient atmospheric levels in even the
most polluted urban environments, and
to workers in diesel-related occupations
for which positive epidemiological
results have been observed. Figure III–
4 compared the range of median dpm
exposures measured for mine workers at
various mines to the range of geometric
means (i.e., estimated medians) reported
for other occupations, as well as to
ambient environmental levels. Figure
III–5 presents a similar comparison,
based on the highest mean dpm level
observed at any individual mine, the
highest mean level reported for any
occupational group other than mining,
and the highest monthly mean
concentration of dpm estimated for
ambient air at any site in the Los
Angeles basin.16 As shown in Figure III–
5, underground miners are currently
exposed at mean levels up to 10 times
higher than the highest mean exposure
reported for other occupations, and up
to 100 times higher than comparable
environmental levels of diesel
particulate.


